Оксана КАРИЧОРТ, Ольга ЖАК
Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна е-mail: olha.zhak@lnu.edu.ua
DOI: https://doi.org/10.37827/ntsh.chem.2021.66.125
КРИСТАЛІЧНА СТРУКТУРА ФОСФІДІВ RPd2P2 (R = Gd, Tb, Dy ТА Er)
Тернарні фосфіди рідкісноземельних металів і паладію RPd2P2, де R = Gd, Tb, Dy та Er, з упорядкованою структурою типу CeAl2Ga2 (просторова група I4/mmm) синтезовано дворазовим спіканням з вихідних компонентів. Параметри атомів у структурі двох фосфідів уточнено рентгеноструктурним методом полікристала: a = 0,40822(2) нм, c = 0,98566(4) нм, RI = 0,0544; RP = 0,0455; wRP = 0,0639 для GdPd2P2; a = 0,40672(1) нм, c = 0,98620(4) нм, RI = 0,0504; RP = 0,0459; wRP = 0,0607 для ERPd2P2; a = 0,40230(1) нм.
Ключові слова: кристалічна структура, тернарний фосфід, рідкісноземельний метал, паладій.
Література:
-
1. Zelinska M., Oryshchyn S., Zhak O., Pivan J.-Y., Potel M., Tougait O., Noël H. The Er–Pd–{P, As, Sb} systems:
phase equilibria, structures and magnetic properties. Book of Abstr. of XI Scientific Conf. “Lviv Chemistry
Reading-2007”, Lviv, May, 30 – June, 1, 2007. Н33.
2. Budnyk S. L. Phase equlibria and crystal structure of the compounds in the {Ce,Yb}–{Co,Ni}–P systems and some
related ones. Thesis for a degree of Candidate of Sciences in Chemistry. Ivan Franko National University of Lviv,
Lviv, 2002.
3. Shatruk M. ThCr2Si2 structure type: The «perovskite» of intermetallics. J. Solid State Chem. 2019. Vol. 272. P.
198–209. (https://doi.org/10.1016/j.jssc.2019.02.012).
4. Szytula A., Penc B., Hoffman M., Przewoznik J. Antiferromagnetism of ThCr2Si2. Solid State Commun. 2012. Vol.
152. P. 1027–1029. (https://doi.org/10.1016/j.ssc.2012.03.015).
5. Kneidinger F., Salamakha L., Bauer E., Zeiringer I., Rogl P., Blaas-Schenner C., Reith D., Podloucky R.
Superconductivity in noncentrosymmetric BaAl4 derived structures. Phys. Rew. B. 2014. Vol. 90, 024504.
(https://doi.org/10.1103/PhysRevB.90.024504).
6. Mathur N.D., Grosche F.M., Julian S.R., Walker I.R., Freye D.M., Haselwimmer R.K.W., Lonzarich G.G.
Magnetically mediated superconductivity in heavy fermion compounds. Nature. 1998. Vol. 394. P. 39–43.
(https://doi.org/10.1038/27838).
7. Yuan H.Q., Grosche F.M., Deppe M., Geibel C., Sparn G., Steglich F. Observation of Two Distinct Superconducting
Phases in CeCu2Si2. Science. 2003. Vol. 302. P. 2104–2107. (https://doi.org/10.1126/science.1091648).
8. Holmes T.A., Jacard D., Miyake K. Signatures of valence fluctuations in CeCu2Si2 under high pressure. Phys.
Rew. B. 2004. Vol. 69. P. 024508. (https://doi.org/10.1103/PhysRevB.69.024508).
9. Shang T., Chen Y.H., Jiang W.B., Chen Y., Jiao, L., Zhang J.L., Weng Z.F., Lu X., Yuan H.Q. Tunable magnetic
orders in CePd2As2–xPx. J. Physics: Condes. Matter. 2014. Vol. 26(4). P. 045601.
(https://doi.org/10.1088/0953-8984/26/4/045601).
10. Rahmam Md. A., Ali Sh. Md. The physical properties ThCr2Si2-type nickel-based super-conductors BaNi2T2 (T = P,
As): An ab-initio study. Chinese J. Phys. 2018. Vol. 59. P. 58–69. (https://doi.org/10.1016/j.cjph.2018.12.026).
11. Nambudripad N., Sampathkumaran E. V., Vijayaraghavan R., Stang I. S., Lüders K. Investigation of 4f-magnetism
in CeNi2P2, EuNi2P2 and YbNi2P2 by susceptibility and NMR studies. Solid State Commun. 1986. Vol. 60. P. 625–628.
(https://doi.org/10.1016/0038-1098(86)90255-3).
12. Jeitschko W. Hofmann W.K. Ternary alkaline-earth and rare-earth metal palladium phosphides with ThCr2Si2 type
and La6Ni6P17-type structures. J. Less-Common Met. 1983. Vol. 95(2). P. 317–322.
(https://doi.org/10.1016/0022-5088(83)90526-X).
13. Ban Z., Sikirica M. The crystal structure of ternary silicides ThM2Si2 (M = Cr, Mn, Fe, Co, Ni and Cu). Acta
Cryst. 1965. Vol. 18. P. 594–599. (https://doi.org/10.1107/S0365110X6500141X).
14. Cabrera-Pascaa G. A., Carbonari A. W., Saxenaa R. N., Bosch-Santos B., Coaquira J.A.H., Filho J.A. Magnetic
hyperfine field at highly diluted Ce impurities in the antiferromagnetic compound GdRh2Si2 studied by perturbed
gamma-gamma angular correlation spectroscopy. J. Alloys Compd. 2012. Vol. 515. P. 44–48.
(https://doi.org/10.1016/j.jallcom.2011.10.077).
15. Barana S., Bałanda M., Gondek Ł., Hoser A., Nenkove K., Penc B., Szytuła A. Nature of magnetic phase
transitions in TbCu2X2 (X = Si, Ge) and HoCu2Si2 compounds. J. Alloys Compd. 2010. Vol. 507. P. 16–20.
(https://doi.org/10.1016/j.jallcom.2010.07.167).
16. Reehuis M., Jeitschko W., Kotzyba G., Zimmer B., Hu X. Antiferromagnetic order in the ThCr2Si2 type phosphides
CaCo2P2 and CeCo2P2. J. Alloy. Compd. 1998. Vol. 266. P. 54–60. (https://doi.org/10.1016/S0925-8388(97)00486-6).
17. Chowdhury U.K., Rahman A., Rahman A., Das P.K., Salma M.U., Ali Sh., Roy D.Ch. The physical properties of
ThCr2Si2-type Ru-based compounds SrRu2X2 (X = P, Ge, As): An ab-inito investigation. Physica C: Superconductivity
and its applications. 2019. Vol. 562. P. 48–55. (https://doi.org/10.1016/j.physc.2018.11.002).
18. Rahaman Md.Z., Rahman Md.A. ThCr2Si2-type Ru-based superconductors LaRu2M2 (M = P and As): An ab-initio
investigation. J. Alloys Compd. 2017. Vol. 695. P. 2827–2834. (https://doi.org/10.1016/j.jallcom.2016.11.418).
19. Drachuck G., Böhmer A.E., Bud'ko S.L., Canfield P.C. Magnetization and transport properties of single
crystalline RPd2P2 (R = Y, La–Nd, Sm–Ho, Yb). J. Magn. Magn. Mater. 2016. Vol. 417. P. 1–19.
(https://doi.org/10.1016/j.jmmm.2016.05.089).
20. Elmslie T.A., Van Gennep D., Bi W., Lai Y., Weir S.T., Vohra, Y.K., Baumbach R.E., Hamlin J.J.
Pressure-induced suppression of ferromagnetism in CePd2P2. Phys. Rev. B. 2020. Vol. 102. P. 125146.
(https://doi.org/10.1103/PhysRevB.102.125146).
21. Tran V. H., Bukowski Z. Ferromagnetism in the Kondo-lattice compound CePd2P2. J. Physics: Condes. Matter.
2014. Vol. 26. P. 255602. (https://doi.org/10.1088/0953-8984/26/25/255602).
22. Hafner D., Rai B.K., Banda J., Kliemt K., Krellner C., Sichelschmidt J., Morosan E., Geibel C., Brando M.
Kondo-lattice ferromagnets and their peculiar order along the magnetically hard axis determined by the crystalline
electric field. Phys. Rew. B. 2019. Vol. 99. P. 201109(R). (https://doi.org/10.1103/PhysRevB.99.201109).
23. Tran V. H., Bukowski Z. L., Tran L., Zaleski A. Magnetic Phase Transition in CePd2P2. Aсta Phys. Pol. A. 2014.
Vol. 126. P. 334–335. (https://doi.org/10.12693/APhysPolA.126.334).
24. Ikeda Y., Yoshizawa H., Konishi S., Araki S., Kobayashi T.C., Yokoo T., Ito S. Characterization of
ferromagnetic order in CePd2P2. J. Phys.: Conf. Ser. 2015. Vol. 592. P. 012013.
(https://doi.org/10.1088/1742-6596/592/1/012013).
25. Lai Y., Bone S.E., Minasian S., Ferrier M.G., Lezama-Pacheco J., Mocko V., Ditter A.S., Kozimor S.A., Seidler
G.T., Nelson L.W., Chiu Y.-C., Huang K., Potter W., Graf D., Albrecht-Schmitt T.E., Baumbach R.E. Ferromagnetic
quantum critical point in CePd2P2 with Pd→Ni substitution. Phys. Rev. B. 2018. Vol. 97. P. 224406.
(https://doi.org/10.1103/PhysRevB.97.224406).
26. Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Version 4). J. Appl.
Crystallogr. 2014. Vol. 47. P. 803–805. (https://doi.org/10.1107/S1600576714001058).
27. Masciocchi N. The contribution of powder diffraction methods to structural crystallography: Rietveld and
ab-initio techniques. The Rigaku J. 1997. Vol. 14(2). P. 9–16.
28. Wiberg N. Lehrbuch der Anorganischen Chemie. Berlin–New-York: Walter de Gruyter, 1995. P. 1838–1841.
29. Kuz’ma Yu.B., Chykhrij S.I. Phosphides. Handbook on the Physics and Chemistry of Rare Earths. Amsterdam:
Elsevier Science B.V., 1996. Vol. 23. P. 285–434.(https://doi.org/10.1016/S0168-1273(96)23007-7).
30. Sologub O.L., Salamakha P.S., Gschneidner K.A., Jr., Bunzli J.-C.G. Rare Earth – Antimony Systems. Handbook on
the Physics and Chemistry of Rare Earths. North-Holland, Amsterdam, 2003. Vol. 33. P. 35–146. (https://doi.org/10.1016/S0168-1273(02)33002-2).
Як цитувати:
КАРИЧОРТ О., ЖАК О. КРИСТАЛІЧНА СТРУКТУРА ФОСФІДІВ RPd2P2 (R = Gd, Tb, Dy, AND Er). Праці НТШ. Хім. Наук. 2021 Т. LXVI. С. 125-133.