ПРАЦІ НАУКОВОГО ТОВАРИСТВА ім. ШЕВЧЕНКА

Хімічні науки

Архів / Том LXVI 2021

Оксана КАРИЧОРТ, Ольга ЖАК

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна
е-mail: olha.zhak@lnu.edu.ua

DOI: https://doi.org/10.37827/ntsh.chem.2021.66.125

КРИСТАЛІЧНА СТРУКТУРА ФОСФІДІВ RPd2P2 (R = Gd, Tb, Dy ТА Er)

Тернарні фосфіди рідкісноземельних металів і паладію RPd2P2, де R = Gd, Tb, Dy та Er, з упорядкованою структурою типу CeAl2Ga2 (просторова група I4/mmm) синтезовано дворазовим спіканням з вихідних компонентів. Параметри атомів у структурі двох фосфідів уточнено рентгеноструктурним методом полікристала: a = 0,40822(2) нм, c = 0,98566(4) нм, RI = 0,0544; RP = 0,0455; wRP = 0,0639 для GdPd2P2; a = 0,40672(1) нм, c = 0,98620(4) нм, RI = 0,0504; RP = 0,0459; wRP = 0,0607 для ERPd2P2; a = 0,40230(1) нм.

Ключові слова: кристалічна структура, тернарний фосфід, рідкісноземельний метал, паладій.

Література:

    1. Zelinska M., Oryshchyn S., Zhak O., Pivan J.-Y., Potel M., Tougait O., Noël H. The Er–Pd–{P, As, Sb} systems: phase equilibria, structures and magnetic properties. Book of Abstr. of XI Scientific Conf. “Lviv Chemistry Reading-2007”, Lviv, May, 30 – June, 1, 2007. Н33.
    2. Budnyk S. L. Phase equlibria and crystal structure of the compounds in the {Ce,Yb}–{Co,Ni}–P systems and some related ones. Thesis for a degree of Candidate of Sciences in Chemistry. Ivan Franko National University of Lviv, Lviv, 2002.
    3. Shatruk M. ThCr2Si2 structure type: The «perovskite» of intermetallics. J. Solid State Chem. 2019. Vol. 272. P. 198–209. (https://doi.org/10.1016/j.jssc.2019.02.012).
    4. Szytula A., Penc B., Hoffman M., Przewoznik J. Antiferromagnetism of ThCr2Si2. Solid State Commun. 2012. Vol. 152. P. 1027–1029. (https://doi.org/10.1016/j.ssc.2012.03.015).
    5. Kneidinger F., Salamakha L., Bauer E., Zeiringer I., Rogl P., Blaas-Schenner C., Reith D., Podloucky R. Superconductivity in noncentrosymmetric BaAl4 derived structures. Phys. Rew. B. 2014. Vol. 90, 024504. (https://doi.org/10.1103/PhysRevB.90.024504).
    6. Mathur N.D., Grosche F.M., Julian S.R., Walker I.R., Freye D.M., Haselwimmer R.K.W., Lonzarich G.G. Magnetically mediated superconductivity in heavy fermion compounds. Nature. 1998. Vol. 394. P. 39–43. (https://doi.org/10.1038/27838).
    7. Yuan H.Q., Grosche F.M., Deppe M., Geibel C., Sparn G., Steglich F. Observation of Two Distinct Superconducting Phases in CeCu2Si2. Science. 2003. Vol. 302. P. 2104–2107. (https://doi.org/10.1126/science.1091648).
    8. Holmes T.A., Jacard D., Miyake K. Signatures of valence fluctuations in CeCu2Si2 under high pressure. Phys. Rew. B. 2004. Vol. 69. P. 024508. (https://doi.org/10.1103/PhysRevB.69.024508).
    9. Shang T., Chen Y.H., Jiang W.B., Chen Y., Jiao, L., Zhang J.L., Weng Z.F., Lu X., Yuan H.Q. Tunable magnetic orders in CePd2As2–xPx. J. Physics: Condes. Matter. 2014. Vol. 26(4). P. 045601. (https://doi.org/10.1088/0953-8984/26/4/045601).
    10. Rahmam Md. A., Ali Sh. Md. The physical properties ThCr2Si2-type nickel-based super-conductors BaNi2T2 (T = P, As): An ab-initio study. Chinese J. Phys. 2018. Vol. 59. P. 58–69. (https://doi.org/10.1016/j.cjph.2018.12.026).
    11. Nambudripad N., Sampathkumaran E. V., Vijayaraghavan R., Stang I. S., Lüders K. Investigation of 4f-magnetism in CeNi2P2, EuNi2P2 and YbNi2P2 by susceptibility and NMR studies. Solid State Commun. 1986. Vol. 60. P. 625–628. (https://doi.org/10.1016/0038-1098(86)90255-3).
    12. Jeitschko W. Hofmann W.K. Ternary alkaline-earth and rare-earth metal palladium phosphides with ThCr2Si2 type and La6Ni6P17-type structures. J. Less-Common Met. 1983. Vol. 95(2). P. 317–322. (https://doi.org/10.1016/0022-5088(83)90526-X).
    13. Ban Z., Sikirica M. The crystal structure of ternary silicides ThM2Si2 (M = Cr, Mn, Fe, Co, Ni and Cu). Acta Cryst. 1965. Vol. 18. P. 594–599. (https://doi.org/10.1107/S0365110X6500141X).
    14. Cabrera-Pascaa G. A., Carbonari A. W., Saxenaa R. N., Bosch-Santos B., Coaquira J.A.H., Filho J.A. Magnetic hyperfine field at highly diluted Ce impurities in the antiferromagnetic compound GdRh2Si2 studied by perturbed gamma-gamma angular correlation spectroscopy. J. Alloys Compd. 2012. Vol. 515. P. 44–48. (https://doi.org/10.1016/j.jallcom.2011.10.077).
    15. Barana S., Bałanda M., Gondek Ł., Hoser A., Nenkove K., Penc B., Szytuła A. Nature of magnetic phase transitions in TbCu2X2 (X = Si, Ge) and HoCu2Si2 compounds. J. Alloys Compd. 2010. Vol. 507. P. 16–20. (https://doi.org/10.1016/j.jallcom.2010.07.167).
    16. Reehuis M., Jeitschko W., Kotzyba G., Zimmer B., Hu X. Antiferromagnetic order in the ThCr2Si2 type phosphides CaCo2P2 and CeCo2P2. J. Alloy. Compd. 1998. Vol. 266. P. 54–60. (https://doi.org/10.1016/S0925-8388(97)00486-6).
    17. Chowdhury U.K., Rahman A., Rahman A., Das P.K., Salma M.U., Ali Sh., Roy D.Ch. The physical properties of ThCr2Si2-type Ru-based compounds SrRu2X2 (X = P, Ge, As): An ab-inito investigation. Physica C: Superconductivity and its applications. 2019. Vol. 562. P. 48–55. (https://doi.org/10.1016/j.physc.2018.11.002).
    18. Rahaman Md.Z., Rahman Md.A. ThCr2Si2-type Ru-based superconductors LaRu2M2 (M = P and As): An ab-initio investigation. J. Alloys Compd. 2017. Vol. 695. P. 2827–2834. (https://doi.org/10.1016/j.jallcom.2016.11.418).
    19. Drachuck G., Böhmer A.E., Bud'ko S.L., Canfield P.C. Magnetization and transport properties of single crystalline RPd2P2 (R = Y, La–Nd, Sm–Ho, Yb). J. Magn. Magn. Mater. 2016. Vol. 417. P. 1–19. (https://doi.org/10.1016/j.jmmm.2016.05.089).
    20. Elmslie T.A., Van Gennep D., Bi W., Lai Y., Weir S.T., Vohra, Y.K., Baumbach R.E., Hamlin J.J. Pressure-induced suppression of ferromagnetism in CePd2P2. Phys. Rev. B. 2020. Vol. 102. P. 125146. (https://doi.org/10.1103/PhysRevB.102.125146).
    21. Tran V. H., Bukowski Z. Ferromagnetism in the Kondo-lattice compound CePd2P2. J. Physics: Condes. Matter. 2014. Vol. 26. P. 255602. (https://doi.org/10.1088/0953-8984/26/25/255602).
    22. Hafner D., Rai B.K., Banda J., Kliemt K., Krellner C., Sichelschmidt J., Morosan E., Geibel C., Brando M. Kondo-lattice ferromagnets and their peculiar order along the magnetically hard axis determined by the crystalline electric field. Phys. Rew. B. 2019. Vol. 99. P. 201109(R). (https://doi.org/10.1103/PhysRevB.99.201109).
    23. Tran V. H., Bukowski Z. L., Tran L., Zaleski A. Magnetic Phase Transition in CePd2P2. Aсta Phys. Pol. A. 2014. Vol. 126. P. 334–335. (https://doi.org/10.12693/APhysPolA.126.334).
    24. Ikeda Y., Yoshizawa H., Konishi S., Araki S., Kobayashi T.C., Yokoo T., Ito S. Characterization of ferromagnetic order in CePd2P2. J. Phys.: Conf. Ser. 2015. Vol. 592. P. 012013. (https://doi.org/10.1088/1742-6596/592/1/012013).
    25. Lai Y., Bone S.E., Minasian S., Ferrier M.G., Lezama-Pacheco J., Mocko V., Ditter A.S., Kozimor S.A., Seidler G.T., Nelson L.W., Chiu Y.-C., Huang K., Potter W., Graf D., Albrecht-Schmitt T.E., Baumbach R.E. Ferromagnetic quantum critical point in CePd2P2 with Pd→Ni substitution. Phys. Rev. B. 2018. Vol. 97. P. 224406. (https://doi.org/10.1103/PhysRevB.97.224406).
    26. Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 2014. Vol. 47. P. 803–805. (https://doi.org/10.1107/S1600576714001058).
    27. Masciocchi N. The contribution of powder diffraction methods to structural crystallography: Rietveld and ab-initio techniques. The Rigaku J. 1997. Vol. 14(2). P. 9–16.
    28. Wiberg N. Lehrbuch der Anorganischen Chemie. Berlin–New-York: Walter de Gruyter, 1995. P. 1838–1841. 29. Kuz’ma Yu.B., Chykhrij S.I. Phosphides. Handbook on the Physics and Chemistry of Rare Earths. Amsterdam: Elsevier Science B.V., 1996. Vol. 23. P. 285–434.(https://doi.org/10.1016/S0168-1273(96)23007-7).
    30. Sologub O.L., Salamakha P.S., Gschneidner K.A., Jr., Bunzli J.-C.G. Rare Earth – Antimony Systems. Handbook on the Physics and Chemistry of Rare Earths. North-Holland, Amsterdam, 2003. Vol. 33. P. 35–146. (https://doi.org/10.1016/S0168-1273(02)33002-2).

Як цитувати:

КАРИЧОРТ О., ЖАК О. КРИСТАЛІЧНА СТРУКТУРА ФОСФІДІВ RPd2P2 (R = Gd, Tb, Dy, AND Er). Праці НТШ. Хім. Наук. 2021 Т. LXVI. С. 125-133.

Завантажити файл