PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXVI 2021

Oksana KARYCHORT, Olha ZHAK

Ivan Franko Lviv National University, Kyryla and Mefodiya Str., 6, 79005 Lviv, Ukraine
е-mail: olha.zhak@lnu.edu.ua

DOI: https://doi.org/10.37827/ntsh.chem.2021.66.125

CRYSTAL STRUCTURE OF THE PHOSPHIDES RPd2P2 (R = Gd, Tb, Dy, AND Er)

Ternary phosphides of the rare earth metals and palladium RPd2P2, where R = Gd, Tb, Dy, and Er, with the fully ordered crystal structure of the CeAl2Ga2 type (space group I4/mmm) have been synthesized from the mixtures of the pure components by double sintering procedure.
Starting materials for the synthesis of the samples were powders of rare earth metals (Gd, Tb, Dy, and Er), palladium, and red phosphorus, all with the purity not less than 99.98 mass %. Mixtures of the constituents in the stoichiometric ratio R20Pd40P40 were pressed into pellets. The pellets were placed within evacuated fused silica tubes which were slowly heated to 1070 K (200 K per day), kept at this temperature during 48–72 h, and then cooled to room temperature by shutting off the furnace. The sintered samples were grounded, pressed again into pellets, and then were annealed within evacuated fused silica tubes at 870 K during 700–1000 h, and then quenched in cold water without breaking the tubes. All samples have been studied by X-ray phase and structural analysis using STOE STADI P diffractometer (Cu Kα1-radiation). For all calculations the WinCSD software was used.
Atomic positional and displacement parameters in the crystal structures of the ternary phosphides GdPd2P2 and ErPd2P2 have been refined by usind X-ray powder diffraction data: CeAl2Ga2 type structure, space group I4/mmm, a = 0.40822(2) nm, c = 0.98566(4) nm, RI = 0.0544; RP = 0.0455; wRP = 0.0639 for GdPd2P2; and a = 0.40672(1) nm, c = 0.98620(4) nm, RI = 0.0504; RP = 0.0459; wRP = 0.0607 for ErPd2P2. Ternary phosphides TbPd2P2 and DyPd2P2 with the same crystal structure (lattice parameters a = 0.4023(1) nm, c = 0.9838(1) nm for TbPd2P2; and a = 0.4056(1) nm, c = 0.9851(1) nm for DyPd2P2) were identified in the two-phase samples.
Interatomic distances in the structures of the phosphides GdPd2P2 and ErPd2P2 are nearly the same as the respective sums of the atomic radii of the components that indicates the predominance of the metallic type of bonding.
Structure type CaAl2Ge2 and related ones CaBe2Ge2 and HfCuSi2 are the most common types among the crystal structures of the ternary compounds of the ternary systems R–М–{P, As, Sb}, where R – rare earth metal, М – transition metal.

Keywords: crystal structure, ternary phosphide, rare earth metal, palladium.

References:

    1. Zelinska M., Oryshchyn S., Zhak O., Pivan J.-Y., Potel M., Tougait O., Noël H. The Er–Pd–{P, As, Sb} systems: phase equilibria, structures and magnetic properties. Book of Abstr. of XI Scientific Conf. “Lviv Chemistry Reading-2007”, Lviv, May, 30 – June, 1, 2007. Н33.
    2. Budnyk S. L. Phase equlibria and crystal structure of the compounds in the {Ce,Yb}–{Co,Ni}–P systems and some related ones. Thesis for a degree of Candidate of Sciences in Chemistry. Ivan Franko National University of Lviv, Lviv, 2002.
    3. Shatruk M. ThCr2Si2 structure type: The «perovskite» of intermetallics. J. Solid State Chem. 2019. Vol. 272. P. 198–209. (https://doi.org/10.1016/j.jssc.2019.02.012).
    4. Szytula A., Penc B., Hoffman M., Przewoznik J. Antiferromagnetism of ThCr2Si2. Solid State Commun. 2012. Vol. 152. P. 1027–1029. (https://doi.org/10.1016/j.ssc.2012.03.015).
    5. Kneidinger F., Salamakha L., Bauer E., Zeiringer I., Rogl P., Blaas-Schenner C., Reith D., Podloucky R. Superconductivity in noncentrosymmetric BaAl4 derived structures. Phys. Rew. B. 2014. Vol. 90, 024504. (https://doi.org/10.1103/PhysRevB.90.024504).
    6. Mathur N.D., Grosche F.M., Julian S.R., Walker I.R., Freye D.M., Haselwimmer R.K.W., Lonzarich G.G. Magnetically mediated superconductivity in heavy fermion compounds. Nature. 1998. Vol. 394. P. 39–43. (https://doi.org/10.1038/27838).
    7. Yuan H.Q., Grosche F.M., Deppe M., Geibel C., Sparn G., Steglich F. Observation of Two Distinct Superconducting Phases in CeCu2Si2. Science. 2003. Vol. 302. P. 2104–2107. (https://doi.org/10.1126/science.1091648).
    8. Holmes T.A., Jacard D., Miyake K. Signatures of valence fluctuations in CeCu2Si2 under high pressure. Phys. Rew. B. 2004. Vol. 69. P. 024508. (https://doi.org/10.1103/PhysRevB.69.024508).
    9. Shang T., Chen Y.H., Jiang W.B., Chen Y., Jiao, L., Zhang J.L., Weng Z.F., Lu X., Yuan H.Q. Tunable magnetic orders in CePd2As2–xPx. J. Physics: Condes. Matter. 2014. Vol. 26(4). P. 045601. (https://doi.org/10.1088/0953-8984/26/4/045601).
    10. Rahmam Md. A., Ali Sh. Md. The physical properties ThCr2Si2-type nickel-based super-conductors BaNi2T2 (T = P, As): An ab-initio study. Chinese J. Phys. 2018. Vol. 59. P. 58–69. (https://doi.org/10.1016/j.cjph.2018.12.026).
    11. Nambudripad N., Sampathkumaran E. V., Vijayaraghavan R., Stang I. S., Lüders K. Investigation of 4f-magnetism in CeNi2P2, EuNi2P2 and YbNi2P2 by susceptibility and NMR studies. Solid State Commun. 1986. Vol. 60. P. 625–628. (https://doi.org/10.1016/0038-1098(86)90255-3).
    12. Jeitschko W. Hofmann W.K. Ternary alkaline-earth and rare-earth metal palladium phosphides with ThCr2Si2 type and La6Ni6P17-type structures. J. Less-Common Met. 1983. Vol. 95(2). P. 317–322. (https://doi.org/10.1016/0022-5088(83)90526-X).
    13. Ban Z., Sikirica M. The crystal structure of ternary silicides ThM2Si2 (M = Cr, Mn, Fe, Co, Ni and Cu). Acta Cryst. 1965. Vol. 18. P. 594–599. (https://doi.org/10.1107/S0365110X6500141X).
    14. Cabrera-Pascaa G. A., Carbonari A. W., Saxenaa R. N., Bosch-Santos B., Coaquira J.A.H., Filho J.A. Magnetic hyperfine field at highly diluted Ce impurities in the antiferromagnetic compound GdRh2Si2 studied by perturbed gamma-gamma angular correlation spectroscopy. J. Alloys Compd. 2012. Vol. 515. P. 44–48. (https://doi.org/10.1016/j.jallcom.2011.10.077).
    15. Barana S., Bałanda M., Gondek Ł., Hoser A., Nenkove K., Penc B., Szytuła A. Nature of magnetic phase transitions in TbCu2X2 (X = Si, Ge) and HoCu2Si2 compounds. J. Alloys Compd. 2010. Vol. 507. P. 16–20. (https://doi.org/10.1016/j.jallcom.2010.07.167).
    16. Reehuis M., Jeitschko W., Kotzyba G., Zimmer B., Hu X. Antiferromagnetic order in the ThCr2Si2 type phosphides CaCo2P2 and CeCo2P2. J. Alloy. Compd. 1998. Vol. 266. P. 54–60. (https://doi.org/10.1016/S0925-8388(97)00486-6).
    17. Chowdhury U.K., Rahman A., Rahman A., Das P.K., Salma M.U., Ali Sh., Roy D.Ch. The physical properties of ThCr2Si2-type Ru-based compounds SrRu2X2 (X = P, Ge, As): An ab-inito investigation. Physica C: Superconductivity and its applications. 2019. Vol. 562. P. 48–55. (https://doi.org/10.1016/j.physc.2018.11.002).
    18. Rahaman Md.Z., Rahman Md.A. ThCr2Si2-type Ru-based superconductors LaRu2M2 (M = P and As): An ab-initio investigation. J. Alloys Compd. 2017. Vol. 695. P. 2827–2834. (https://doi.org/10.1016/j.jallcom.2016.11.418).
    19. Drachuck G., Böhmer A.E., Bud'ko S.L., Canfield P.C. Magnetization and transport properties of single crystalline RPd2P2 (R = Y, La–Nd, Sm–Ho, Yb). J. Magn. Magn. Mater. 2016. Vol. 417. P. 1–19. (https://doi.org/10.1016/j.jmmm.2016.05.089).
    20. Elmslie T.A., Van Gennep D., Bi W., Lai Y., Weir S.T., Vohra, Y.K., Baumbach R.E., Hamlin J.J. Pressure-induced suppression of ferromagnetism in CePd2P2. Phys. Rev. B. 2020. Vol. 102. P. 125146. (https://doi.org/10.1103/PhysRevB.102.125146).
    21. Tran V. H., Bukowski Z. Ferromagnetism in the Kondo-lattice compound CePd2P2. J. Physics: Condes. Matter. 2014. Vol. 26. P. 255602. (https://doi.org/10.1088/0953-8984/26/25/255602).
    22. Hafner D., Rai B.K., Banda J., Kliemt K., Krellner C., Sichelschmidt J., Morosan E., Geibel C., Brando M. Kondo-lattice ferromagnets and their peculiar order along the magnetically hard axis determined by the crystalline electric field. Phys. Rew. B. 2019. Vol. 99. P. 201109(R). (https://doi.org/10.1103/PhysRevB.99.201109).
    23. Tran V. H., Bukowski Z. L., Tran L., Zaleski A. Magnetic Phase Transition in CePd2P2. Aсta Phys. Pol. A. 2014. Vol. 126. P. 334–335. (https://doi.org/10.12693/APhysPolA.126.334).
    24. Ikeda Y., Yoshizawa H., Konishi S., Araki S., Kobayashi T.C., Yokoo T., Ito S. Characterization of ferromagnetic order in CePd2P2. J. Phys.: Conf. Ser. 2015. Vol. 592. P. 012013. (https://doi.org/10.1088/1742-6596/592/1/012013).
    25. Lai Y., Bone S.E., Minasian S., Ferrier M.G., Lezama-Pacheco J., Mocko V., Ditter A.S., Kozimor S.A., Seidler G.T., Nelson L.W., Chiu Y.-C., Huang K., Potter W., Graf D., Albrecht-Schmitt T.E., Baumbach R.E. Ferromagnetic quantum critical point in CePd2P2 with Pd→Ni substitution. Phys. Rev. B. 2018. Vol. 97. P. 224406. (https://doi.org/10.1103/PhysRevB.97.224406).
    26. Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 2014. Vol. 47. P. 803–805. (https://doi.org/10.1107/S1600576714001058).
    27. Masciocchi N. The contribution of powder diffraction methods to structural crystallography: Rietveld and ab-initio techniques. The Rigaku J. 1997. Vol. 14(2). P. 9–16.
    28. Wiberg N. Lehrbuch der Anorganischen Chemie. Berlin–New-York: Walter de Gruyter, 1995. P. 1838–1841. 29. Kuz’ma Yu.B., Chykhrij S.I. Phosphides. Handbook on the Physics and Chemistry of Rare Earths. Amsterdam: Elsevier Science B.V., 1996. Vol. 23. P. 285–434.(https://doi.org/10.1016/S0168-1273(96)23007-7).
    30. Sologub O.L., Salamakha P.S., Gschneidner K.A., Jr., Bunzli J.-C.G. Rare Earth – Antimony Systems. Handbook on the Physics and Chemistry of Rare Earths. North-Holland, Amsterdam, 2003. Vol. 33. P. 35–146. (https://doi.org/10.1016/S0168-1273(02)33002-2).

How to Cite

KARYCHORT O., ZHAK O. CRYSTAL STRUCTURE OF THE PHOSPHIDES RPd2P2 (R = Gd, Tb, Dy, AND Er). Proc. Shevchenko Sci. Soc. Chem. Sci. 2021 Vol. LXVI. P. 125-133.

Download the pdf