ПРАЦІ НАУКОВОГО ТОВАРИСТВА ім. ШЕВЧЕНКА

Хімічні науки

Архів / Том LXX 2022

Юлія СТЕЦІВ, Михайло ЯЦИШИН, Олександр РЕШЕТНЯК

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна
e-mail: yuliia.stetsiv@lnu.edu.ua

DOI: https://doi.org/10.37827/ntsh.chem.2022.70.026

ШИРИНА ЗАБОРОНЕНОЇ ЗОНИ ТА ПОКАЗНИК ЗАЛОМЛЕННЯ ПОЛІАНІЛІНУ.

Синтезовано плівки поліаніліну (ПАн), доповані цитратною кислотою, на поліети-леновому субстраті шляхом хімічної окиснювальної полімеризації з використанням амоній пероксидисульфату як окисника. Досліджено вплив товщини плівок ПАн на оптичні властивості отриманих матеріалів. Визначено такі оптоелектронні параметри: оптична ширина забороненої зони та показник заломлення синтезованих зразків плівок. Розглянуто різні методи визначення енергії енергетичної щілини (метод Тауца та підгонки спектра поглинання). З’ясовано, що ширина забороненої зони прямого дозволеного переходу ПАн зменшується зі збільшенням товщини осаджених плівок ПАн.
На основі кореляцій між оптичною енергією ширини забороненої зони та показником заломлення напівпровідників з використанням співвідношень Мосса (M), Равіндра (R), Равіндра-Гупта (R-G), Редді-Ахаммеда (R-A), Герве-Вандамме (G-V), Кумар-Сінгха (K-S), Аннані (A) та Даффі-Редді (D-R) розраховано значення показника заломлення плівок ПАн і порівняно ці результати зі значеннями, отриманими за результатами експерименту. Визначення оптичної енергії ширини забороненої зони та показника заломлення проводили за експериментальними даними за допомогою методу Тауца та підгонки спектрів поглинання (ПСП).

Ключові слова: поліанілін, плівки, показник заломлення, ширина забороненої зони

Література:

    1. Du B., Yi J., Yan H. et al. Temperature Induced Aggregation of Organic Semiconductors. Chem. Eur. J. 2020. Vol. 27(9). P. 2908–2919. (https://doi.org/10.1002/chem.202002559).
    2. Tripathy S.K. Refractive indices of semiconductors from energy gaps. Opt. Mater. 2015. Vol. 46. P. 240–246. (https://doi.org/10.1016/j.optmat.2015.04.026).
    3. Ravindra N.M., Ganapathy P., Choi J. Energy gap–refractive index relations in semiconductors – An overview. Infrared Phys. Technol. 2007. Vol. 50(1). P. 21–29. (https://doi.org/10.1016/j.infrared.2006.04.001).
    4. Gomaa H.M., Yahia I.S., Zahran H.Y. Correlation between the static refractive index and the optical bandgap: Review and new empirical approach. Physica B. 2021. Vol. 620. P. 413246. (https://doi.org/10.1016/j.physb.2021.413246).
    5. Lü C., Yang B. High refractive index organic-inorganic nanocomposites: Design, synthesis and application. J. Mater. Chem. 2009. Vol. 19. P. 2884–2901. (https://doi.org/10.1039/B816254A).
    6. Yetisen A.K., Montelongo Y., Butt H. Rewritable three-dimensional holographic data storage via optical forces. Appl. Phys. Lett. 2016. Vol. 109. P. 061106. (https://doi.org/10.1063/1.4960710).
    7. Kim K.-C. Effective graded refractive-index anti-reflection coating for high refractive-index polymer ophthalmic lenses. Mater. Lett. 2015. Vol. 160. P. 158–161. (https://doi.org/10.1016/j.matlet.2015.07.108).
    8. Li X., Yu X., Han Y. Polymer thin films for antireflection coatings. J. Mater. Chem. C. 2013. Vol. 1. P. 2266–2285. (https://doi.org/10.1039/C2TC00529H).
    9. Sanders D.P. Advances in Patterning Materials for 193 nm Immersion Lithography. Chem. Rev. 2010. Vol. 110(1). P. 321–360. (https://doi.org/10.1021/cr900244n).
    10. Chandrappa H., Bhajantri R.F., Ranjitha et al. Simple fabrication of PVA-ate (amaranthus tricolor leaves extract) polymer biocomposite: An efficient UV-shielding material for organisms in terrestrial and aquatic ecosystems. Opt. Mater. 2020. Vol. 109. P. 110204. (https://doi.org/10.1016/j.optmat.2020.110204).
    11. Aziz S.B., Brza M.A., Nofal M.M. et al. A Comprehensive Review on Optical Properties of Polymer Electrolytes and Composites. Materials. 2020. Vol. 13(17). P. 3675. (https://doi.org/10.3390/ma13173675).
    12. Inzelt G. Recent advances in the field of conducting polymers. J. Sol. St. Electrochem. 2017. Vol. 21(7). P. 1965–1975. (https://doi.org/10.1007/s10008-017-3611-6).
    13. MacDiarmid A.G. Synthetic metals: a novel role for organic polymers. Synth. Met. 2002. Vol. 125(1). P. 11–22. (https://doi.org/10.1016/S0379-6779(01)00508-2).
    14. Long Y.-Z. Li M.-M., Gu C. et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 2011. Vol. 36(10). P. 1415–1442. (https://doi.org/10.1016/j.progpolymsci.2011.04.001).
    15. Ćirić-Marjanović G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 2013. Vol. 177. P. 1–47. (https://doi.org/10.1016/j.synthmet.2013.06.004).
    16. Song E., Choi J.-W. Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing. Nanomater. 2013. Vol. 3(3). P. 498–523. (https://doi.org/10.3390/nano3030498).
    17. Dispenza M., Sabatino M. A., Chmielewska D. et al. Inherently fluorescent polyaniline nanoparticles in a dynamic landscape. React. Funct. Polym. 2012. Vol. 72(3). P. 185–197. (https://doi.org/10.1016/j.reactfunctpolym.2012.01.001).
    18. Wang X., Shao M., Shao G. et al. A facile route to ultra-long polyaniline nanowires and the fabrication of photoswitch. J. Colloid Interf. Sci. 2009. Vol. 332(1). P. 74–80. (https://doi.org/10.1016/j.jcis.2008.12.033).
    19. Olenych I.B., Aksimentyeva O.I., Monastyrskii L.S., Pavlyk M.R. Electrochromic effect in photoluminescent porous silicon–polyaniline hybrid structures. J. Appl. Spectroscopy. 2012. Vol. 79(3). P. 495–498. (https://doi.org/10.1007/s10812-012-9629-8).
    20. De León-Almazán C.M., Estrada-Moreno I.A., Olmedo-Martínez J.L., Rivera-Armenta J.L. Semiconducting elastomers based on polyaniline/clay nanocomposites and SEBS obtained by an alternative processing technique. Synth. Met. 2020. Vol. 268. P. 116460. (https://doi.org/10.1016/j.synthmet.2020.116460).
    21. Chand P., Vaish S., Kumar Pr. Structural, optical and dielectric properties of transition metal (MFe2O4; M = Co, Ni and Zn) nanoferrites. Physica B. 2017. Vol. 524. P. 53–63. (https://doi.org/10.1016/j.physb.2017.08.060).
    22. Tripathy S.K., Pattanaik A. Optical and electronic properties of some semiconductors from energy gaps. Opt. Mater. 2016. Vol. 53. P. 123–133. (https://doi.org/10.1016/j.optmat.2016.01.012).
    23. Cabuk M., Gündüz B. Change of optoelectronic parameters of the boric acid-doped polyaniline conducting polymer with concentration. Appl. Surf. Sci. 2017. Vol. 532. P. 263–269. (https://doi.org/10.1016/j.colsurfa.2017.05.008).
    24. Akther H., Bhuiyan A.H., Kabir H. et al. Understanding the enhancement of the optical and electronic attributes of iodine-doped vacuum deposited tetramethylaniline (PPTMA) thin film coatings. J. Alloys Compd. 2021. Vol. 874. P. 159989. (https://doi.org/10.1016/j.jallcom.2021.159989).
    25. Sharma E., Sharmahy P. Applicability of different models of energy bandgap and refractive index for chalcogenide thin films. Mater. Today: Proc. 2020. Vol. 28(1). P. 92–95. (https://doi.org/10.1016/j.matpr.2020.01.342).
    26. Kondawar S.B., Pethe S.M. Synthesis and characterization of nanofibers of conducting polyaniline and its substitute derivatives. Adv. Mat. Lett. 2014. Vol. 5(7). P. 414–420. (https://doi.org/10.5185/amlett.2014.amwc.1039).
    27. Isac J. Harikrishnan J.I., Nair G. Optical band gap analysis of nano-crystalline ceramic PbSrCaCuO. J. Adv. Phys. 2014. Vol. 5. P. 816–822. (https://doi.org/10.24297/jap.v5i3.1881).
    28. Kimball G.M., Müller A.M., Lewis N.S., Atwater H.A. Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2. Appl. Phys. Lett. 2009. Vol. 95. P. 112103. (https://doi.org/10.1063/1.3225151).
    29. Mergena Ö.B., Arda E. Determination of Optical Band Gap Energies of CS/MWCNT Bio-nanocomposites by Tauc and ASF Methods. Synth. Met. 2020. Vol. 269. P. 116539. (https://doi.org/10.1016/j.synthmet.2020.116539).
    30. Dolgonos A., Mason T.O., Poeppelmeier K.R. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method. J. Solid State Chem. 2016. Vol. 240. P. 43–48. (https://doi.org/10.1016/j.jssc.2016.05.010).
    31. Landi S. Jr., Segundo I.R., Freitas E. et al. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022. Vol. 341. P. 14573. (https://doi.org/10.1016/j.ssc.2021.114573).
    32. Makuła P., Pacia M., Macyk W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018. Vol. 9(23) P. 6814–6817. (https://doi.org/10.1021/acs.jpclett.8b02892).
    33. Hussein A.M., Dannoun E.M.A., Aziz S.B. et al. Steps Toward the Band Gap Identification in Polystyrene Based Solid Polymer Nanocomposites Integrated with Tin Titanate Nanoparticles. Polymers. 2020. Vol. 12. P. 2320. (https://10.3390/polym12102320).
    34. Heiba Z.K., Mohamed M.B., Ahmed S.I. Exploring the physical properties of PVA/PEG polymeric material upon doping with nanogadolinium oxide. Alexandria Eng. J. 2022. Vol. 61. P. 3375–3383. (https://doi.org/10.1016/j.aej.2021.08.051).
    35. Stetsiv Yu.A., Yatsyshyn M.M., Nykypanchuk D. et al. Characterization of polyaniline thin films prepared on polyethylene terephthalate substrate. Polym. Bull. 2021. Vol. 78. P. 6251–6265. (https://doi.org/10.1007/s00289-020-03426-7).
    36. Stetsiv Yu., Zhuravets’ka І., Yatsyshyn М. et al. Thin polyaniline films on a polyethylene terephthalate substrate as Cr(VI) adsorbents. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021. Vol. LXVI. P. 19–33. (in Ukrainian) (https://doi.org/10.37827/ntsh.chem.2021.66.019).
    37. Shishkanova T.V., Matějka P., Král V. et al. Optimization of the thickness of a conducting polymer, polyaniline, deposited on the surface of poly(vinyl chloride) membranes: a new way to improve their potentiometric response. Anal. Chim. Acta. 2008. Vol. 624(2). P. 238–246. (https://doi.org/10.1016/j.aca.2008.07.001).
    38. Baker A.G. The Study of Optical Energy Gap, Refractiv Index, and Dielectric Constant of Pure and Doped Polyaniline with HCl and H2SO4 Acids. ARO-The Scientific Journal of Koya University. 2019. Vol. VII(1). P. 47–52. (https://doi.org/10.14500/aro.10483).
    39. Muhammad F.F., Aziz S.B., Hussein S.A. Effect of the dopant salt on the optical parameters of PVA:NaNO3 solid polymer electrolyte. J. Mater. Sci: Mater. Electron. 2015. Vol. 26. P. 521–529. (https://doi.org/10.1007/s10854-014-2430-0).
    40. Aziz S.B., Hassan A.Q., Mohammed S.J. et al. Structural and Optical Characteristics of PVA:C-Dot Composites: Tuning the Absorption of Ultra Violet (UV) Region. Nanomaterials. 2019. Vol. 9(2). P. 216–236. (https://doi.org/10.3390/nano9020216).
    41. Abed-Elmageed A.A.I., Zoromba M.Sh., Hassanien R., Al-Hossainy A.F. Facile synthesis of spin-coated poly (4-nitroaniline) thin film: Structural and optical properties. Opt. Mater. 2020. Vol. 109. P. 110378. (https://doi.org/10.1016/j.optmat.2020.110378).
    42. Sonker R.K., Sabhajeet S.R., Yadav B.C. TiO2–PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO2 gas sensing. J. Mater. Sci.: Mater. Electron. 2016. Vol. 27(11). P. 11726–11732. (https://doi.org/10.1007/s10854-016-5310-y).
    43. Li X., Zhu H., Wei J. Determination of band gaps of self-assembled carbon nanotube films using Tauc/Davis–Mott model. Appl. Phys. A. 2009. Vol. 97. P. 341–344. (https://doi.org/10.1007/s00339-009-5330-z).
    44. Rammah Y.S., Abdalla A.M. Study of the optical properties and the carbonaceous clusters in DAM-ADC solid state nuclear track detectors. Radiat. Phys. Chem. 2017. Vol. 141. P. 125–130. (https://doi.org/10.1016/j.radphyschem.2017.06.016).
    45. Ali F.M. Structural and optical characterization of [(PVA:PVP)-Cu2+] composite films for promising semiconducting polymer devices. J. Mol. Struct. 2019. Vol. 1189. P. 352–359. (https://doi.org/10.1016/j.molstruc.2019.04.014).
    46. Rammah Y.S., El-Sersy A.R., El-Mesady I.A., El-Agawany F.I. Modifications of Structural, Optical, and Carbonaceous Clusters in Neutron Irradiated C12H18O7 Polymeric Detector. J. Rad. Nucl. Appl. 2019. Vol. 4(2). P. 91–100. (https://doi.org/10.18576/jrna/040203).
    47. De Paiva A.B., Correr G.I., Ugucioni J.C. On the photoconductivity behavior of emeraldine-salt polyaniline films. Synth. Met. 2021. Vol. 281. P. 116915. (https://doi.org/10.1016/j.synthmet.2021.116915).
    48. Kwiatkowska E., Mech W., Wincukiewicz A. et al. Investigation of polyaniline doped with camphorsulfonic acid in chloroform solution as a hole transporting layer in PTB7: PCBM and perovskite-based solar cells. Electrochim. Acta. 2021. Vol. 380. P. 138264. (https://doi.org/10.1016/j.electacta.2021.138264).
    49. Amin, P.O., Ketuly, K.A., Saeed, S.R. et al. Synthesis, spectroscopic, electrochemical and photophysical properties of high band gap polymers for potential applications in semi-transparent solar cells. BMC Chemistry. 2021. Vol. 15. P. 25–40. (https://doi.org/10.1186/s13065-021-00751-4).
    50. Belgherbi O., Seid L., Lakhdari D., et al. Optical and Morphological Properties of Electropolymerized Semiconductor Polyaniline Thin Films: Effect of Thickness. J. Electron. Mater. 2021. Vol. 50. P. 3876–3884. (https://doi.org/10.1007/s11664-021-08896-7).
    51. Souri D., Tahan Z.E. A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B. 2015. Vol. 119. P. 273–279. (https://doi.org/10.1007/s00340-015-6053-9).
    52. Cabuk M., Gündüz B. Controlling the optical properties of polyaniline doped by boric acidparticles by changing their doping agent and initiator concentration. Appl. Surf. Sci. 2017. Vol. 424(3). P. 345–351. (https://doi.org/10.1016/j.apsusc.2017.03.010).
    53. Moss T.S. Photoconductivity in the Elements. ‒ New York: Academic Press Inc., 1952. 263 р. 54. Ravindra N.M., Srivastava V.K. Variation of refractive index with energy gap in semiconductors. Infrared. Phys. 1979. Vol. 19(5). P. 603–604. (https://doi.org/10.1016/0020-0891(79)90081-2).
    55. Gupta V.P., Ravindra N.M. Comments on the Moss Formula. Phys. Status Solidi B. 1980. Vol. 100(2). P. 715–719. (https://doi.org/10.1002/pssb.2221000240).
    56. Herve P., Vandamme L.K.J. General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 1994. Vol. 35(4). P. 609–615. (https://doi.org/10.1016/1350-4495(94)90026-4).
    57. Reddy R.R., Ahammed Y.N. A study on the Moss relation. Infrared Phys. Technol. 1995. Vol. 36(5). P. 825–830. (https://doi.org/10.1016/1350-4495(95)00008-M).
    58. Kumar V., Singh J.K. Model for calculating the refractive index of different materials. Indian. J. Pure Appl. Phys. 2010. Vol. 48(8). P. 571–574.
    59. Anani M., Mathieu C., Lebid S. et al. Model for calculating the refractive index of a III–V semiconductor. Comput. Mater. Sci. 2008. Vol. 41(4). P. 570–575. (https://doi.org/10.1016/j.commatsci.2007.05.023).
    60. Duffy J.A. Trends in energy gaps of binary compounds: An approach based upon electron transfer parameters from optical spectroscopy. J. Phys. C: Solid St. Phys. 1980. Vol. 13(16). P. 2979–2989. (https://doi.org/10.1088/0022-3719/13/16/008).
    61. Reddy R.R., Ahammed Y.N., Gopal K.R., Raghuram D.V. Optical electronegativity and refractive index of materials. Opt. Mater. 1998. Vol. 10(2). P. 95–100. (https://doi.org/10.1016/S0925-3467(97)00171-7).
    62. El-Sayed S., Abdel-Baset T.A., AbouElfadl A., Hassen A. Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinylalcohol/polyaniline films. Physica B. 2015. Vol. 464. P. 17–27. (https://doi.org/10.1016/j.physb.2015.02.016).

Як цитувати:

СТЕЦІВ Ю., ЯЦИШИН М., РЕШЕТНЯК О. ШИРИНА ЗАБОРОНЕНОЇ ЗОНИ ТА ПОКАЗНИК ЗАЛОМЛЕННЯ ПОЛІАНІЛІНУ. Праці НТШ. Хім. Наук. 2022 Т. LXX. С. 26-42.

Завантажити файл