Юлія СТЕЦІВ1, Олег ВЕРЕЩАГІН2, Михайло ЯЦИШИН1, Олександр РЕШЕТНЯК1
1Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна, е-mail: yuliia.stetsiv@lnu.edu.ua
2Шін Етсу Tілозе ТНВ і Ко. АГ, Rheingaustraße, 190−196, 65203 Вісбаден, Німеччина
DOI: https://doi.org/10.37827/ntsh.chem.2025.78.080
ОПТИЧНІ ВЛАСТИВОСТІ ПОЛІМЕР–ПОЛІМЕРНИХ КОМПОЗИТНИХ ПЛІВОК НА ОСНОВІ ЦЕЛЮЛОЗИ ТА ПОЛІАНІЛІНУ
Композитні плівки целюлоза-поліанілін (Цел/ПАн) отримано шляхом окиснювальної полімеризації аніліну амоній пероксодисульфатом у водному розчині целюлози у 0,5 М цитратній кислоті (ЦК) та сформовано методом лиття з розчину й випаровування розчинника. Плівки отримано за різних об’ємних співвідношень розчинів компонентів, а саме целюлоза:анілін (Цел:Ан) – 1:0,01, 1: 0,02 та 1: 0,04, відповідно. Структуру композитів аналізували за допомогою методів ІЧ-ФП та оптичної спектроскопій. Досліджено вплив вмісту ПАн на оптичні властивості отриманих зразків. З’ясовано, що ширина забороненої зони прямого дозволеного переходу композитних плівок Цел/ПAн, синтезованих за збільшення масового вмісту аніліну в 4 рази, зменшується з 2,76 до 2,46 еВ, відповідно.
Ключові слова: поліанілін, целюлоза, плівки, ширина забороненої зони.
Література:
-
1. Guerraf A.E., Ziani I., Jadi S.B. et al. Smart conducting polymer innovations for sustainable and safe food
packaging technologie. Compr. Rev. Food. Sci. Food Saf. 2024. Vol. 23(6). P. e70045. (https://doi.org/10.1111/1541-4337.70045).
2. Wu X., Fu W., Chen H. Conductive Polymers for Flexible and Stretchable Organic Optoelectronic Applications. ACS
Appl. Polym. Mater. 2022. Vol. 4(7). P. 4609−4623. (https://doi.org/10.1021/acsapm.2c00519).
3. Lim J.W. Polymer Materials for Optoelectronics and Energy Applications. Materials. 2024. Vol. 17(15). P. 3698.
(https://doi.org/10.3390/ma17153698).
4. Hasan M.B., Parvez M.M., Abir A.Y., Ahmad M.F. A review on conducting organic polymers: Concepts, applications,
and potential environmental benefits. Heliyon. 2025. Vol. 11(3). P. e42375.
(https://doi.org/10.1016/j.heliyon.2025.e42375).
5. Dutta K., De S. Aromatic conjugated polymers for removal of heavy metal ions from wastewater: a short review.
Environ. Sci.: Water Res. Technol. 2017. Vol. 3. P. 793805. (https://doi.org/10.1039/C7EW00154A).
6. De Souza Jr.F.G., Barradas T.N., Caetano V.F., Becerra A. Nanoparticles improving polyaniline electrical
conductivity: A meta-analysis study. Braz. J. Experim. Design Data Anal. Inferen. Stat. 2022. Vol. 2(1). P. 2659.
(https://doi.org/10.55747/bjedis.v2i1.52468).
7. Sharma N., Singh A., Kumar N. et al. A review on polyaniline and its composites: from synthesis to properties
and progressive applications. J. Mater. Sci. 2024. Vol. 59. P. 6206–6244.
(https://doi.org/10.1007/s10853-024-09562-z).
8. Yan Y., Jiang Y., Ng E.L.L., et al. Progress and opportunities in additive manufacturing of electrically
conductive polymer composites. Mater. Today Adv. 2023. Vol. 17. P. 100333.
(https://doi.org/10.1016/j.mtadv.2022.100333).
9. Al-Harbi N., Atta A., Henaish A.M.A. et al. Structural, characterization, and linear/nonlinear optical behavior
of polyaniline/cellulose acetate composite films. J. Mater. Sci: Mater Electron. 2023. Vol. 34. P. 1215.
(https://doi.org/10.1007/s10854-023-10598-1).
10. Cao Y., Qiu J., Smith P. Effect of solvents and co-solvents on the processibility of polyaniline: I.
solubility and conductivity studies Synth. Met. 1995. Vol. 69(1–3). P. 187–190.
(https://doi.org/10.1016/0379-6779(94)02412-R).
11. Rana A.K., Scarpa F., Thakur V.K. Cellulose/polyaniline hybrid nanocomposites: Design, fabrication, and
emerging multidimensional applications. Ind. Crops Prod. 2022. Vol. 187. P. 115356.
(https://doi.org/10.1016/j.indcrop.2022.115356).
12. Bhadra J., Al-Thani N. Advances in blends preparation based on electrically conducting polymer. Emergent
Mater. 2019. Vol. 2. P. 67–77. (https://doi.org/10.1007/s42247-019-00027-7).
13. Hnizdiukh Yu.A., Yatsyshyn M.M., Reshetnyak O.V. Surface Modification of Polymeric Materials by Polyaniline
and Application of Polyaniline/Polymeric Composites. In: Reshetnyak O. V., Zaikov G. E. (eds.) Computational and
Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group). Toronto;
New Jersey 2017. P. 423473. (https://doi.org/10.1201/9781315366357-12).
14. Stetsiv Y.A., Yatsyshyn M. M., Nykypanchuk D. et al. Characterization of polyaniline thin films prepared on
polyethylene terephthalate substrate. Polym. Bull. 2021. Vol. 78. P. 6251−6265.
(https://doi.org/10.1007/s00289-020-03426-7).
15. Abdelhamied M.M., Atta A., Abdelreheem A.M. et al. Synthesis and optical properties of PVA/PANI/Ag
nanocomposite films. J. Mater. Sci.: Mater. Electron. 2020. Vol. 31(24). P. 22629–22641.
(https://doi.org/10.1007/s10854-020-04774-w).
16. Homma T., Kondo M., Kuwahara T., Shimomura M. Polyaniline/poly(acrylic acid) composite film: a promising
material for enzyme-aided electrochemical sensors. Eur. Polym. J. 2015. Vol. 62. P. 139–144.
(https://doi.org/10.1016/j.eurpolymj.2014.11.017).
17. Wissa D.A., Ward A.A., Gad S.A. et al. Preparation Novel Polyvinyl Alcohol/Polyaniline Hybrid Nanocomposites
Based on Barium Titanate and Magnetite. J. Cluster Sci. 2025. Vol. 36(4). P. 132.
(https://doi.org/10.1007/s10876-025-02855-6).
18. Shaari H.A.H., Ramli M.M., Mohtar M.N. et al. Synthesis and Conductivity Studies of Poly(Methyl Methacrylate)
(PMMA) by Co-Polymerization and Blending with Polyaniline (PANi). Polymers. 2021. Vol. 13(12). P. 1939.
(https://doi.org/10.3390/polym13121939).
19. Etale A., Onyianta A.J., Turner S.R., Eichhorn S.J. Cellulose: A Review of Water Interactions, Applications in
Composites, and Water Treatment. Chem. Rev. 2023. Vol. 123(5). P. 2016–2048.
(https://doi.org/10.1021/acs.chemrev.2c00477).
20. Moon R.J., Martini A., Nairn J. Cellulose: Cellulose nanomaterials review: structure, properties and
nanocomposites. Chem. Soc. Rev. 2011. Vol. 40. P. 3941–3994. (https://doi.org/10.1021/acs.chemrev.2c00477).
21. Thambidurai S., Pandiselvi K. Polyaniline/Natural Polymer Composites and Nanocomposites. Chapter 9.
Polyaniline Blends, Composites, and Nanocomposites. 2018. P. 235256.
(https://doi.org/10.1016/B978-0-12-809551-5.00009-6).
22. Yang L., Yang L., Wu S. et al. Three-dimensional conductive organic sulfonic acid co-doped bacterial
cellulose/polyaniline nanocomposite films for detection of ammonia at room temperature. Sens. Actuators, B. 2020.
Vol. 323. P. 128689. (https://doi.org/10.1016/j.snb.2020.128689).
23. Xiong C., Zheng C., Zhang Z. et al. Polyaniline@cellulose nanofibers multifunctional composite material for
supercapacitors, electromagnetic interference shielding and sensing. J. Materiomics. 2025. Vol. 11(1). P. 100841.
(https://doi.org/10.1016/j.jmat.2024.01.015).
24. Sharma R., Nath P.C., Mohanta Y.K. et al. Recent advances in cellulose-based sustainable materials for
wastewater treatment: An overview. Inter. J. Biol. Macromol. 2024. Vol. 256(2). P. 128517.
(https://doi.org/10.1016/j.ijbiomac.2023.128517).
25. Gong Q., Li Y., Liu X. et al. A facile preparation of polyaniline/cellulose hydrogels for all-in-one flexible
supercapacitor with remarkable enhanced performance. Carbohydr. Polym. 2020. Vol. 245. P. 116611.
(https://doi.org/10.1016/j.carbpol.2020.116611).
26. Shalini A., Nishanthi R., Palani P., Jaisankar V. One pot synthesis, characterization of polyaniline and
cellulose/polyaniline nanocomposites: application towards in vitro measurements of antibacterial activity. Mater.
Today Proc. 2016. Vol. 3(6). P. 1633-1642. (https://doi.org/10.1016/j.matpr.2016.04.053).
27. Zhang R., Li Y., Ci Y. et al. Synthesis and characterization of polyaniline-based composites using cellulose
nanocrystals as biological templates. Int. J. Biol. Macromol. 2024. Vol. 269(1). P. 132098.
(https://doi.org/10.1016/j.ijbiomac.2024.132098).
28. Smitiukh O.V., Yanchuk О.М., Marchuk О.В. et al. Electrochemical Synthesis of Nanoparticles of Zinc Oxide
Using Film Former MHB 3000 P2. Phys. Chem. Solid State. 2025. Vol. 26(1). P. 118-123.
(https://doi.org/10.15330pcss.26.1.118-123).
29. Smitiukh O.V., Yanchuk О.М., Marchuk О.В. et al. Electrochemical Synthesis of Zinc Oxide in the Presence of
Surfactant FARMACOAT. J. Nano Electron. Phys. 2025. Vol. 17(1). P. 01015(5pp).
(https://doi.org/10.21272/jnep.17(1).01015).
30. Chattopadhyay D., Bain M.K. Electrically conductive nanocomposites of polyaniline with poly(vinyl alcohol) and
methylcellulose. J. Appl. Polym. Sci. 2008. Vol. 110(5). P. 2849–2853. (https://doi.org/10.1002/app.28836).
31. Hussin H., Gan S.N., Mohamad S., Phang S.W. Synthesis of Water-soluble Polyaniline by Using Different Types Of
Cellulose Derivatives. Polym. Polym. Composites. 2017. Vol. 25(7). P. 515–519.
(https://doi.org/10.1177/096739111702500702).
32. Assem H.D., Donkor M.E.K., Tamakloe R.Y., Nkum R.K. A Review of UV-Vis on Polymers; Polyaniline (PANI) and Its
Nanocomposites. Eur. J. Appl. Sci. 2024. Vol. 12(2). P. 322-346. (https://doi.org/10.14738/aivp.122.16797).
33. Abdiryim T., Xiao-Gang Z., Jamal R. Comparative studies of solid-state synthesized polyaniline doped with
inorganic acids. Mater. Chem. Phys. 2005. Vol. 90. P. 367–372. (https://doi.org/10.1016/j.vacuum.2007.03.008).
34. Saravanan S., Anantharaman M.R., Venkatachalam S. et al. Studies on the optical band gap and cluster size of
the polyaniline thin films irradiated with swift heavy Si ions. Vacuum. 2008. Vol. 82. P. 56–60.
(https://doi.org/10.1016/j.vacuum.2007.03.008).
35. Atta A., Abdelhamied M.M., Abdelreheem A.M., Berber M.R. Flexible Methyl Cellulose/Polyaniline/Silver
Composite Films with Enhanced Linear and Nonlinear Optical Properties. Polymers. 2021. Vol. 13(8). P. 1228.
(https://doi.org/10.21203/rs.3.rs-270302/v1).
36. Gupta S., Choudhary D., Sarma A. Study of Carbonaceous Clusters in Irradiated Polycarbonate with UV-vis
Spectroscopy. J. Polym. Sci., Part B: Polym. Phys. 2000. Vol. 38(12). P. 1589–1594.
(https://doi.org/10.1002/(SICI)1099-0488(20000615)38:12<1589::AID-POLB30>3.0.CO;2-K).
37. Kumar R., Ali S.A., Mahur A.K. et al. Study of
optical band gap and carbonaceous clusters in swift heavy ion irradiated polymers with UV–Vis spectroscopy.
Nucl. Instrum. Methods Phys. Res., Sect. B. 2008. Vol. 266. P. 1788–1792.
(https://doi.org/10.1016/j.nimb.2008.01.010).
38. Al-Hada N.M., Al-Ghaili A.M., Baqer
A.A. et al.
Radiation-induced synthesis, electrical and optical characterization of conducting polyaniline of PANI/PVA
composites. Mater. Sci. Eng. B. 2020. Vol. 261. P. 114758. (https://doi.org/10.1016/j.mseb.2020.114758).
39. Sharma E., Sharmahy P. Applicability of different models of energy bandgap and refractive index for
chalcogenide
thin films. Mater. Today: Proc. 2020. Vol. 28. P. 92–95. (https://doi.org/10.1016/j.matpr.2020.01.342).
40. Gomaa H.M., Yahia I.S., Zahran H.Y. Correlation between the static refractive index and the optical bandgap:
Review
and new empirical approach. Phys. B. 2021. Vol. 620. P. 413246. (https://doi.org/10.1016/j.physb.2021.413246).
41. Chen W., Yu H., Liu Y. Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from
bamboo fibers. Carbohydr. Polym. 2011. Vol. 86. P. 453–461. (https://doi.org/10.1016/j.carbpol.2011.04.061).
42. Casado U.M., Quintanilla R.M., Aranguren M.I. et al. Composite films based on shape memory polyurethanes and
nanostructured polyaniline or cellulose–polyaniline particles. Synth. Met. 2012. Vol. 162. P. 1654–1664.
(https://doi.org/10.1016/j.synthmet.2012.07.020).
43. Yang C., Chen C., Pan Y. et al. Flexible highly specific
capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline. Electrochim.
Acta. 2015. Vol. 182. P. 264–271. (https://doi.org/10.1016/j.electacta.2015.09.096).
44. Rajini R., Venkateswarlu U., Rose C. et al. Studies on the composites of cellulose triacetate (prepared from
sugar cane pulp) and
gelatin. J. Appl. Polym. Sci. 2021. Vol. 82(4). P. 847–853. (https://doi.org/10.1002/app.1916).
Як цитувати:
СТЕЦІВ Ю., ВЕРЕЩАГІН О., ЯЦИШИН М., РЕШЕТНЯК О. ОПТИЧНІ ВЛАСТИВОСТІ ПОЛІМЕР–ПОЛІМЕРНИХ КОМПОЗИТНИХ ПЛІВОК НА ОСНОВІ ЦЕЛЮЛОЗИ ТА ПОЛІАНІЛІНУ. Праці НТШ. Хім. Наук. 2025. Т. 78. С. 80-89.