Yuliia STETSIV1, Oleg VERESHCHAGIN2, Mykhaylo YATSYSHYN1, Oleksandr RESHETNYAK1
1Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: yuliia.stetsiv@lnu.edu.ua
2SE Tylose GmbH & Co. KG, Rheingaustraße, 190−196, 65203 Wiesbaden, Germany
OPTICAL PROPERTIES OF POLYMER-POLYMER COMPOSITE FILMS BASED ON CELLULOSE AND POLYANILINE
In the present work, the flexible cellulose-polyaniline (Cel/PAn) composite films have been successfully synthesized by in situ oxidation polymerization method and formed by solution casting and solvent evaporation. The aniline was polymerized with ammonium peroxodisulfate as oxidant in an aqueous solution of cellulose in 0.5 M citric acid (CA) at room temperature. The cellulose-polyaniline films were obtained by using different volume ratios of component solutions, namely cellulose:aniline (Cel:An) – 1:0.01, 1:0.02 та 1:0.04, respectively. The photos of obtained samples showed that homogenous distribution of polyaniline in the composites. The structural properties of the cellulose, polyaniline and cellulose-polyaniline composites were also analyzed using Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-vis) methods, respectively. The FTIR recorded a decrease in the intensities of cellulose-polyaniline, indicating the successful incorporation of polyaniline in the composite. The effect of polyaniline content on the optical properties of the obtained samples was studied. The absorption edge, optical band gap and number of carbon cluster were estimated. The optical band gaps were obtained by Tauc’s relation from UV-vis absorption spectra. It was found that the optical band gap of the direct transition of cellulose-polyaniline composite films decreases from 2.76 to 2.46 eV, where synthesized with a 4-fold increase in the mass content of aniline, respectively. The Urbach energy values were increased with the increase of polyaniline content. In addition, carbon clusters of cellulose-polyaniline films number is enhanced from 155 to 196. Moreover, the optical coefficients such refractive indexes of the cellulose-polyaniline films were determined. This work provides a straightforward method to prepare flexible cellulose-polyaniline films, which could be applied in sensors, flexible electrodes and flexible displays.
Keywords: polyaniline, сellulose, films, band gap.
References:
-
1. Guerraf A.E., Ziani I., Jadi S.B. et al. Smart conducting polymer innovations for sustainable and safe food
packaging technologie. Compr. Rev. Food. Sci. Food Saf. 2024. Vol. 23(6). P. e70045. (https://doi.org/10.1111/1541-4337.70045).
2. Wu X., Fu W., Chen H. Conductive Polymers for Flexible and Stretchable Organic Optoelectronic Applications. ACS
Appl. Polym. Mater. 2022. Vol. 4(7). P. 4609−4623. https://doi.org/10.1021/acsapm.2c00519.
3. Lim J.W. Polymer Materials for Optoelectronics and Energy Applications. Materials. 2024. Vol. 17(15). P. 3698.
https://doi.org/10.3390/ma17153698.
4. Hasan M.B., Parvez M.M., Abir A.Y., Ahmad M.F. A review on conducting organic polymers: Concepts, applications,
and potential environmental benefits. Heliyon. 2025. Vol. 11(3). P. e42375.
https://doi.org/10.1016/j.heliyon.2025.e42375.
5. Dutta K., De S. Aromatic conjugated polymers for removal of heavy metal ions from wastewater: a short review.
Environ. Sci.: Water Res. Technol. 2017. Vol. 3. P. 793805. https://doi.org/10.1039/C7EW00154A.
6. De Souza Jr.F.G., Barradas T.N., Caetano V.F., Becerra A. Nanoparticles improving polyaniline electrical
conductivity: A meta-analysis study. Braz. J. Experim. Design Data Anal. Inferen. Stat. 2022. Vol. 2(1). P. 2659.
https://doi.org/10.55747/bjedis.v2i1.52468.
7. Sharma N., Singh A., Kumar N. et al. A review on polyaniline and its composites: from synthesis to properties
and progressive applications. J. Mater. Sci. 2024. Vol. 59. P. 6206–6244.
htps://doi.org/10.1007/s10853-024-09562-z.
8. Yan Y., Jiang Y., Ng E.L.L., et al. Progress and opportunities in additive manufacturing of electrically
conductive polymer composites. Mater. Today Adv. 2023. Vol. 17. P. 100333.
https://doi.org/10.1016/j.mtadv.2022.100333.
9. Al-Harbi N., Atta A., Henaish A.M.A. et al. Structural, characterization, and linear/nonlinear optical behavior
of polyaniline/cellulose acetate composite films. J. Mater. Sci: Mater Electron. 2023. Vol. 34. P. 1215.
https://doi.org/10.1007/s10854-023-10598-1.
10. Cao Y., Qiu J., Smith P. Effect of solvents and co-solvents on the processibility of polyaniline: I.
solubility and conductivity studies Synth. Met. 1995. Vol. 69(1–3). P. 187–190.
https://doi.org/10.1016/0379-6779(94)02412-R.
11. Rana A.K., Scarpa F., Thakur V.K. Cellulose/polyaniline hybrid nanocomposites: Design, fabrication, and
emerging multidimensional applications. Ind. Crops Prod. 2022. Vol. 187. P. 115356.
https://doi.org/10.1016/j.indcrop.2022.115356.
12. Bhadra J., Al-Thani N. Advances in blends preparation based on electrically conducting polymer. Emergent
Mater. 2019. Vol. 2. P. 67–77. https://doi.org/10.1007/s42247-019-00027-7.
13. Hnizdiukh Yu.A., Yatsyshyn M.M., Reshetnyak O.V. Surface Modification of Polymeric Materials by Polyaniline
and Application of Polyaniline/Polymeric Composites. In: Reshetnyak O. V., Zaikov G. E. (eds.) Computational and
Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group). Toronto;
New Jersey 2017. P. 423473. https://doi.org/10.1201/9781315366357-12.
14. Stetsiv Y.A., Yatsyshyn M. M., Nykypanchuk D. et al. Characterization of polyaniline thin films prepared on
polyethylene terephthalate substrate. Polym. Bull. 2021. Vol. 78. P. 6251−6265.
https://doi.org/10.1007/s00289-020-03426-7.
15. Abdelhamied M.M., Atta A., Abdelreheem A.M. et al. Synthesis and optical properties of PVA/PANI/Ag
nanocomposite films. J. Mater. Sci.: Mater. Electron. 2020. Vol. 31(24). P. 22629–22641.
https://doi.org/10.1007/s10854-020-04774-w.
16. Homma T., Kondo M., Kuwahara T., Shimomura M. Polyaniline/poly(acrylic acid) composite film: a promising
material for enzyme-aided electrochemical sensors. Eur. Polym. J. 2015. Vol. 62. P. 139–144.
https://doi.org/10.1016/j.eurpolymj.2014.11.017.
17. Wissa D.A., Ward A.A., Gad S.A. et al. Preparation Novel Polyvinyl Alcohol/Polyaniline Hybrid Nanocomposites
Based on Barium Titanate and Magnetite. J. Cluster Sci. 2025. Vol. 36(4). P. 132.
https://doi.org/10.1007/s10876-025-02855-6.
18. Shaari H.A.H., Ramli M.M., Mohtar M.N. et al. Synthesis and Conductivity Studies of Poly(Methyl Methacrylate)
(PMMA) by Co-Polymerization and Blending with Polyaniline (PANi). Polymers. 2021. Vol. 13(12). P. 1939.
https://doi.org/10.3390/polym13121939.
19. Etale A., Onyianta A.J., Turner S.R., Eichhorn S.J. Cellulose: A Review of Water Interactions, Applications in
Composites, and Water Treatment. Chem. Rev. 2023. Vol. 123(5). P. 2016–2048.
https://doi.org/10.1021/acs.chemrev.2c00477.
20. Moon R.J., Martini A., Nairn J. Cellulose: Cellulose nanomaterials review: structure, properties and
nanocomposites. Chem. Soc. Rev. 2011. Vol. 40. P. 3941–3994. https://doi.org/10.1021/acs.chemrev.2c00477.
21. Thambidurai S., Pandiselvi K. Polyaniline/Natural Polymer Composites and Nanocomposites. Chapter 9.
Polyaniline Blends, Composites, and Nanocomposites. 2018. P. 235256.
https://doi.org/10.1016/B978-0-12-809551-5.00009-6.
22. Yang L., Yang L., Wu S. et al. Three-dimensional conductive organic sulfonic acid co-doped bacterial
cellulose/polyaniline nanocomposite films for detection of ammonia at room temperature. Sens. Actuators, B. 2020.
Vol. 323. P. 128689. https://doi.org/10.1016/j.snb.2020.128689.
23. Xiong C., Zheng C., Zhang Z. et al. Polyaniline@cellulose nanofibers multifunctional composite material for
supercapacitors, electromagnetic interference shielding and sensing. J. Materiomics. 2025. Vol. 11(1). P. 100841.
https://doi.org/10.1016/j.jmat.2024.01.015.
24. Sharma R., Nath P.C., Mohanta Y.K. et al. Recent advances in cellulose-based sustainable materials for
wastewater treatment: An overview. Inter. J. Biol. Macromol. 2024. Vol. 256(2). P. 128517.
https://doi.org/10.1016/j.ijbiomac.2023.128517.
25. Gong Q., Li Y., Liu X. et al. A facile preparation of polyaniline/cellulose hydrogels for all-in-one flexible
supercapacitor with remarkable enhanced performance. Carbohydr. Polym. 2020. Vol. 245. P. 116611.
https://doi.org/10.1016/j.carbpol.2020.116611.
26. Shalini A., Nishanthi R., Palani P., Jaisankar V. One pot synthesis, characterization of polyaniline and
cellulose/polyaniline nanocomposites: application towards in vitro measurements of antibacterial activity. Mater.
Today Proc. 2016. Vol. 3(6). P. 16331642. https://doi.org/10.1016/j.matpr.2016.04.053.
27. Zhang R., Li Y., Ci Y. et al. Synthesis and characterization of polyaniline-based composites using cellulose
nanocrystals as biological templates. Int. J. Biol. Macromol. 2024. Vol. 269(1). P. 132098.
https://doi.org/10.1016/j.ijbiomac.2024.132098.
28. Smitiukh O.V., Yanchuk О.М., Marchuk О.V. et al. Electrochemical Synthesis of Nanoparticles of Zinc Oxide
Using Film Former MHB 3000 P2. Phys. Chem. Solid State. 2025. Vol. 26(1). P. 118–123.
https://doi.org/10.15330pcss.26.1.118–123.
29. Smitiukh O.V., Yanchuk О.М., Marchuk О.V. et al. Electrochemical Synthesis of Zinc Oxide in the Presence of
Surfactant FARMACOAT. J. Nano Electron. Phys. 2025. Vol. 17(1). P. 01015(5pp).
https://doi.org/10.21272/jnep.17(1).01015.
30. Chattopadhyay D., Bain M.K. Electrically conductive nanocomposites of polyaniline with poly(vinyl alcohol) and
methylcellulose. J. Appl. Polym. Sci. 2008. Vol. 110(5). P. 2849–2853. https://doi.org/10.1002/app.28836.
31. Hussin H., Gan S.N., Mohamad S., Phang S.W. Synthesis of Water-soluble Polyaniline by Using Different Types of
Cellulose Derivatives. Polym. Polym. Composites. 2017. Vol. 25(7). P. 515–519.
https://doi.org/10.1177/096739111702500702.
32. Assem H.D., Donkor M.E.K., Tamakloe R.Y., Nkum R.K. A Review of UV-Vis on Polymers; Polyaniline (PANI) and Its
Nanocomposites. Eur. J. Appl. Sci. 2024. Vol. 12(2). P. 322346. https://doi.org/10.14738/aivp.122.16797.
33. Abdiryim T., Xiao-Gang Z., Jamal R. Comparative studies of solid-state synthesized polyaniline doped with
inorganic acids. Mater. Chem. Phys. 2005. Vol. 90. P. 367–372. https://doi.org/10.1016/j.vacuum.2007.03.008.
34. Saravanan S., Anantharaman M.R., Venkatachalam S. et al. Studies on the optical band gap and cluster size of
the polyaniline thin films irradiated with swift heavy Si ions. Vacuum. 2008. Vol. 82. P. 56–60.
https://doi.org/10.1016/j.vacuum.2007.03.008.
35. Atta A., Abdelhamied M.M., Abdelreheem A.M., Berber M.R. Flexible Methyl Cellulose/Polyaniline/Silver
Composite Films with Enhanced Linear and Nonlinear Optical Properties. Polymers. 2021. Vol. 13(8). P. 1228.
https://doi.org/10.21203/rs.3.rs-270302/v1.
36. Gupta S., Choudhary D., Sarma A. Study of Carbonaceous Clusters in Irradiated Polycarbonate with UV–vis
Spectroscopy. J. Polym. Sci., Part B: Polym. Phys. 2000. Vol. 38(12). P. 1589–1594.
https://doi.org/10.1002/(SICI)1099-0488(20000615)38:12<1589.
37. Kumar R., Ali S.A., Mahur A.K. et al. Study of
optical band gap and carbonaceous clusters in swift heavy ion irradiated polymers with UV–Vis spectroscopy.
Nucl. Instrum. Methods Phys. Res., Sect. B. 2008. Vol. 266. P. 1788–1792.
https://doi.org/10.1016/j.nimb.2008.01.010. 38. Al-Hada N.M., Al-Ghaili A.M., Baqer A.A. et al.
Radiation-induced synthesis, electrical and optical characterization of conducting polyaniline of PANI/PVA
composites. Mater. Sci. Eng. B. 2020. Vol. 261. P. 114758. https://doi.org/10.1016/j.mseb.2020.114758. 39.
Sharma E., Sharmahy P. Applicability of different models of energy bandgap and refractive index for chalcogenide
thin films. Mater. Today: Proc. 2020. Vol. 28. P. 92–95. https://doi.org/10.1016/j.matpr.2020.01.342. 40. Gomaa
H.M., Yahia I.S., Zahran H.Y. Correlation between the static refractive index and the optical bandgap: Review
and new empirical approach. Phys. B. 2021. Vol. 620. P. 413246. https://doi.org/10.1016/j.physb.2021.413246. 41.
Chen W., Yu H., Liu Y. Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from
bamboo fibers. Carbohydr. Polym. 2011. Vol. 86. P. 453–461. https://doi.org/10.1016/j.carbpol.2011.04.061. 42.
Casado U.M., Quintanilla R.M., Aranguren M.I. et al. Composite films based on shape memory polyurethanes and
nanostructured polyaniline or cellulose–polyaniline particles. Synth. Met. 2012. Vol. 162. P. 1654–1664.
https://doi.org 0.1016/j.synthmet.2012.07.020. 43. Yang C., Chen C., Pan Y. et al. Flexible highly specific
capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline. Electrochim.
Acta. 2015. Vol. 182. P. 264–271. https://doi.org/10.1016/j.electacta.2015.09.096. 44. Rajini R., Venkateswarlu
U., Rose C. et al. Studies on the composites of cellulose triacetate (prepared from sugar cane pulp) and
gelatin. J. Appl. Polym. Sci. 2021. Vol. 82(4). P. 847–853. https://doi.org/10.1002/app.1916.