PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LX 2020

Nikolai KOROTKIKH1, Gennadiy RAYENKO2, Vagiz SABEROV1, Vasyl YENYA1, Nataliya GLINYANAYA2, Alexandr AVKSENTIEV1, Oles SHVAIKA2

1Institute of Organic Chemistry NAS of Ukraine 5, Murmanska Str., Kyiv, 02094, Ukraine

2Institute of Physical Organic and Coal Chemistry NAS of Ukraine Kharkiv road, 50, Kyiv, 02160, Ukraine e-mail: nkorotkikh@ua.fm

DOI: https://doi.org/10.37827/ntsh.chem.2020.60.085

PHILICITY OF CARBENES. A NEW VIEW.

The electronic properties of carbenes including thermodynamic parameters such as new electronic philicity indices Ie, Ph, and for comparizon chemical hardnesses η, proton affinities (РA) calculated by DFT method (B3LYP5/6-31G*/RHF for definition of electronic indices and B3LYP5/3-21G/RHF, B3LYP5/3-21G/UHF for definition of chemical hard¬nesses) have been discussed in the paper. With their help, the estimation of philicities, electron-donating and electron-withdrawing abilities of a wide range of carbenes of both nucleophilic and electrophilic type was carried out. It was established that the philicities of carbenes according to electronic indices Іе, Ph depend on the carbenic structure (the backbone of the molecule and steric effects of substituents) and also on the reagent structure, particularly its steric effect. For typical nucleophilic carbenes, the Ph is in the range of 1–3,0, for neutral carbenes 1–1,5, IeH 8,5–22,2 eV, for neutral carbenes IeH 8,5–10,5, for typical electrophilic – in the intervals of PhH –0,3–0,5, IeH –3,4–3,4 eV. The intermediate values (Ph 0,5–1,0, IeH 3,4–8,5 eV) are characteristic for typical ambiphilic carbenes. In the evaluation of electron-donating and electron-withdrawing properties, the values of ED and EA should be taken into account (maximal EDH values were found for neutral carbene 20 (13,8 eV) and for superbasic anionic carbenes (for 22 18,4 eV)). The highest electron acceptability EAH was found for cationic carbene 29 (11,8 eV). In the reactions with carbon ions, the values of the IeH, PhH indices decrease significantly, and the electron acceptability increases. Increasing the steric effects leads to «inversion» of philicities for nucleophilic carbenes (Ph up to 0,1), and the properties of electrophilic carbenes become even more pronounced (Ph up to –2,7). The found dependences of the electronic properties of carbenes allow regulating the structure of carbenes to achieve certain characteristics, which together with stability factors can be used in the design of structures for synthesis and practical application.

Keywords: carbenes, proton affinity, chemical hardness, electronic indices.

References:

    1. Enders D., Niemeier O., Henseler A. Organocatalysis by N-Heterocyclic Carbenes. Chem. Rev. 2007. Vol. 107. P. 5606–5655. (http://doi.org/10.1021/cr068372z).
    2. Jahnke M. C., Hahn F. E. RSC Catalysis, Ser. 6: N-Heterocyclic carbenes: from laboratory curiosities to efficient synthetic tools, Dıez-Gonzalez, S. Ed.; RSC. 2011; Chapter 1. – P. 1–41. (http://doi.org/10.1039/9781782626817).
    3. Korotkikh N. I., Shvaika O. P. Carbene and carbene complex catalysis of organic reactions. – Donetsk: DonNU, 2013. 372 p. (in Ukrainian).
    4. Korotkikh N., Shvaika O. Organic reactions catalysis by carbenes and metal carbene complexes. – LAP Lambert Academic Publishing. 2015. 385 p.
    5. Bourissou D., Guerret O., Gabbaï F. P., Bertrand G. Stable Carbenes. Chem. Rev. 2000. Vol. 100. P. 39–91. (http://doi.org/10.1021/cr940472u).
    6. Kirmse W. The Beginnings of N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. 2010. Vol. 49. P. 8798–8801. (http://doi.org/10.1002/anie.201001658).
    7. Martin D., Melaimi M., Soleilhavoup M., Bertrand G. A brief survey of our contribution to stable carbene chemistry. Organometallics. 2011. Vol. 30. P. 5304–5313. (http://doi.org/10.1021/om200650x).
    8. Korotkikh N. І., Cowley А. H., Clyburne J. A. C., Robertson K. N., Saberov V. Sh., Glinyanaya N. V., Rayenko G. F., Shvaika О. P. Synthesis and properties of heteroaromatic carbenes of the imidazole and triazole series and their fused analogues. Arkivoc. 2017. Vol. 1. P. 257–355. (https://doi.org/10.24820/ark.5550190.p010.110).
    9. Perez P. Theoretical Evaluation of the Global and Local Electrophilicity Patterns of Singlet Carbenes. J. Phys. Chem. A. 2003. Vol. 107. P. 522–525. (https://doi.org/10.1021/jp021779x).
    10. Nelson D. J., Nolan S. P. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chem. Soc. Rev. 2013. Vol. 42. P. 6723–6753. (https://doi.org/10.1039/C3CS60146C).
    11. Clavier H., Nolan S. P. Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry. Chem. Commun. 2010. Vol. 46. P. 841–861. (http://doi.org/10.1039/b922984a).
    12. Tolman C. A. Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homo-geneous Catalysis. Chem. Rev. 1977. Vol. 77. P. 313–348. (https://doi.org/10.1021/cr60307a002).
    13. Alder R. W., Allen P. R., Williams S. J. Stable Carbenes as Strong Bases. Chem. Commun.1995. P. 1267–1268. (https://doi.org/10.1039/C39950001267).
    14. Kim Y.-J., Streitwieser A. Basicity of a Stable Carbene, 1,3-Di-tert-butylimidazol-2-ylidene, in THF. J. Am. Chem. Soc. 2002. Vol. 124. P. 5757–5761. (https://doi.org/10.1021/ja025628j).
    15. Magill A. M., Cavell K. J., Yates B. F. Basicity of Nucleophilic Carbenes in Aqueous and Nonaqueous Solvents – Theoretical Predictions. J. Am. Chem. Soc. 2004. Vol. 126. P. 8717–8724. (https://doi.org/10.1021/ja038973x).
    16. Vogt J., Beauchamp J. L. Reactions of CHF2+ with n-Donor Bases by Ion Cyclotron Resonance Spectroscopy. The Proton Affinity of Difluorocarbene. J. Am. Chem. Soc. 1975. Vol. 97. P. 6682–6685. (https://doi.org/10.1021/ja00856a014).
    17. Ausloos P., Lias S. G. Proton Affinity of Dichlorocarbene. J. Am. Chem. Soc. 1978. Vol. 100. P. 4594–4595. (https://doi.org/10.1021/ja00482a046). 18. Moss R. A. Carbenic philicity. In Carbene chemistry. From fleeting interme¬diates to powerful reagents. Ed. by G. Bertrand, Marcel Dekker, Fontis Media, 2002. P. 57–101.
    19. Hopkinson A.C., Lien M.H. Substituent effects in carbocations CX', CHX", and CH2X', and in singlet and triplet carbenes CHX. Proton affinities of singlet carbenes. Can. J. Chem. 1985. Vol. 63. P. 3582–3586. (https://doi.org/10.1139/v85-588).
    20. Parr R. G., Pearson R. G. Absolute Hardness: Companion Parameter to Absolute Electro-negativity. J. Am. Chem. Soc. 1983. Vol. 105. P. 7512–7516. (https://doi.org/10.1021/ja00364a005).
    21. Guha A. K., Das C., Phukan A. K. Heterocyclic carbenes of diverse flexibility: A theoretical insight. J. Organomet. Chem. 2011. Vol. 696. P. 586–593. (https://doi.org/10.1016/j.jorganchem.2010.09.066).
    22. Parr R. G. , Szentpaly L. V., Liu S. Electrophilicity Index. J. Am. Chem. Soc. 1999. Vol. 121. P. 1922–1924. (https://doi.org/10.1021/ja983494x).
    23. Domingo L. R., Perez P. Global and local reactivity indices for electrophilic/ nucleophilic free radicals. Org. Biomol. Chem. 2013. Vol. 11. P. 4350–4358. (https://doi.org/10.1039/C3OB40337H).
    24. Pratihar S., Roy S. Nucleophilicity and Site Selectivity of Commonly Used Arenes and Heteroarenes. J. Org. Chem. 2010. Vol. 75. P. 4957–4963. (https://doi.org/10.1021/jo100425a).
    25. Domingo L. R., Perez P. The nucleophilicity N index in organic chemistry. Org. Biomol. Chem. 2011. Vol. 9. P. 7168–7175. (https://doi.org/10.1039/C1OB05856H).
    26. Domingo L. R., Perez P., Saґez J. A. Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Advances. 2013. Vol. 3. P. 1486–1494. (https://doi.org/10.1039/C2RA22886F).
    27. Rezaee N., Ahmadi A., Kassaee M. Z. Nucleophilicity of normal and abnormal N-hetero¬cyclic carbenes at DFT: steric effects on tetrazole-5-ylidenes. RSC Adv. 2016. Vol. 6. P. 13224–13233. (https://doi.org/10.1039/C5RA21247B).
    28. Wu C.-S., Su M.-D. Reactivity for boryl(phosphino)carbenyl carbene analogues with group 14 elements (C, Si, Ge, Sb, and Pb) as a heteroatom: a theoretical study. Dalton Trans. 2012. Vol. 41. P. 3253–3265. (https://doi.org/10.1039/c2dt11464j).
    29. Sander W. Matrix Isolation of Electrophilic carbenes. In Carbene chemistry. From fleeting intermediates to powerful reagents. Ed. by G. Bertrand, Marcel Dekker, Fontis Media, 2002. P. 1–26.
    30. Korotkikh N. І., Saberov V. Sh., Rayenko G. F., Shvaika О. P. Proton affinities of hetero¬cyclic carbenes. Sci. Notes of the V. Gnatyuk Ternopil. Nation. Univ. 2016. Vol. 23. P. 3–11. (http://dspace.tnpu.edu.ua/bitstream/123456789/7390/1/Korotkikh.pdf).
    31. Korotkikh N. І., Rayenko G. F., Saberov V. Sh., Popov A. F., Shvaika О. P. Proton affinities of a series of heterocyclic carbenes and their ionic forms. Ukr. Chem. J. 2018, Vol. 84(11). P. 38–50. (https://ucj.org.ua/index.php/journal/issue/view/10/11-2018).
    32. Dixon D. A., Lias S. G. In Moleculur Structure and Energetics; Liebman J. F., Greenberg A., Eds.; VCH Publishers: Deerfield Beach, FL, 1987; Vol. 2, Chapter 7. P. 269. 33. Dixon D.A., Arduengo A.J. Electronic Structure of a Stable Nucleophlllc Carbene. J. Phys. Chem. 1991. Vol. 95. P. 4180-4182. (https://doi.org/10.1021/j100164a003).
    34. Chemical Reactivity and Reaction Paths. Ed. G. Klopman. A Wiley-Interscience Publication, New York-London-Sydney-Toronto, 1973; World, Moscow. 1977. P. 353.
    35. Phukan A. K., Guha A. K. Stabilization of cyclic and acyclic carbon(0) compounds by differential coordination of heterocyclic carbenes: a theoretical assessment. Dalton Trans. 2012. Vol. 41. P. 8973–8981. (https://doi.org/10.1039/C2DT30855J).
    36. Amani J., Musavi S. M. Substituted six-membered ring carbenes: the effects of amino and cyclopropyl groups through DFT calculations. Tetrahedron. 2011. Vol. 67. P. 749–754. (https://doi.org/10.1016/j.tet.2010.11.056).
    37. Dixon D. A., Lias S. G. In Moleculur Structure and Energetics; J. F. Liebman, A. Greenberg, Eds.; VCH Publishers: Deerfield Beach, FL, 1987; Vol. 2, Chapter 7. P. 269.
    38. Hopkinson A. C., Lien M. H. Substituent effects at silicon in cations SiХ+, HSiX+⋅. and H2SiX+, and in radicals H2SiX+⋅. Can. J. Chem., 1989. Vol. 67. P. 991–997. (https://doi.org/10.1139/v89-151).
    39. Lo R., Ganguly B. First principle studies toward the design of a new class of carbene superbases involving intramolecular H-π interactions. Chem. Commun. 2011. Vol. 47. P. 7395–7397. (https://doi.org/10.1039/C1CC11366F).
    40. Pliego J. R., DeAlmeida W. B. Absolute proton affinity and basicity of the carbenes CH2, CF2, CCl2, C(OH)2, FCOH, CPh2 and Fluorenylidene. J. Chem. Soc., Faraday Trans. 1997. Vol. 93. P. 1881–1883. (https://doi.org/10.1039/A608011A).
    41. Alder R. W., Blake M. E., Oliva J. M. Diaminocarbenes; Calculation of Barriers to Rotation about Carbene-N Bonds, Barriers to Dimerization, Proton Affinities, and 13C NMR Shifts. J. Phys. Chem. A. 1999. Vol. 103. P. 11200–11211. (https://doi.org/10.1021/jp9934228).
    42. Arduengo A. J. III, Harlow R. L., Kline M. A stable crystalline carbene. J. Am. Chem. Soc. 1991. Vol. 113. P. 361–363. (https://doi.org/10.1021/ja00001a054).
    43. Arduengo A. J. III, Harlow R. L., Kline M., Rasika Dias H. V. Electronic Stabilization of Nucleophilic Carbenes. J. Am. Chem. Soc. 1992, Vol. 114. P. 5530–553. (https://doi.org/10.1021/ja00040a007).
    44. Saberov V. Sh., Evans D. A., Korotkikh N. I., Cowley A. H., Pekhtereva T. M., Popov A. F., Shvaika O. P. Exceptionally Efficient Catalytic Hydrodechlorination of Persistent Organic Pollutants: Application of New Sterically Shielded Palladium Carbene Complexes. Dalton Trans. 2014. Vol. 43(43). P. 18117–18122. (https://doi.org/10.1039/C4DT02908A).
    45. Arduengo A. J. III, Goerlich J. R., Marshall W. J. J. Am. Chem. Soc. 1995. Vol. 117. P. 11027–11028. (https://doi.org/10.1021/ja00149a034).
    46. Moerdyk J. P., Bielawski C. W. Reductive generation of stable, five-membe¬red N,N’-diamidocarbenes. Chem. Commun. 2014. Vol. 50. P. 4551–4553. (https://doi.org/10.1039/C4CC00846D).
    47. Korotkikh N. I., Raenko G. F., Shvaika O. P. New approaches to the synthesis of stable heteroaromatic carbenes. Rep. Ukr. Nation. Acad. Sci. 2000. Vol. 2. P. 135–140 (in Ukrainian).
    48. Hahn F. E., Wittenbecher L., Boese R., Blaser D. N,N'-Bis(2,2-dimethyl¬propyl)¬benz-imidazolin-2-ylidene: A Stable Nucleophilic Carbene Derived from Benzimidazole. Chem. Eur. J. 1999. Vol. 5. P. 1931–1935. (https://doi.org/10.1002/(SICI)1521-3765(19990604)5:6<1931::AID-CHEM1931>3.0.CO;2-M).
    49. Korotkikh N. I., Raenko G. F., Pekhtereva T. M., Shvaika O. P., Cowley A. H., Jones J. N. Stable carbenes. Synthesis and properties of benzimidazol-2-ylidene. Rus. J. Org. Chem. 2006. Vol. 42. P. 1822–1833 (in Russian). (https://doi.org/10.1134/S1070428006120116).
    50. Saberov V. Sh., Okolovska A. G., Korotkikh N. I., Shvaika O. P. Synthesis of stable carbenes of the phenathro[9,10-d]imidazole series. Proceedings of the VІІ Ukrainian confer. «Dombrovsky chemical readings-2017». Yaremche, September, 12-16 2017. Ivano-Frankivsk, 2017. P. С-48 (in Ukrainian).
    51. Korotkikh N. I., RayenkoG. F., Shvaika O. P., Pekhtereva T. M., Cowley A. H., Jones J. N., Macdonald C. L. B. Synthesis of 1,2,4-Triazol-5-ylidenes and Their Interaction with Acetonitrile and Chalcogens. J. Org. Chem. 2003. Vol. 68(14). P. 5762–5765. (https://doi.org/10.1021/jo034234n).
    52. Korotkikh N. І., Glinyanaya N. V., Cowley А. H., Moore J. А., Knishevitsky А. V., Pekhtereva Т. М., Shvaika О. P. Tandem transformations of 1,2,4-triazol-5-ylidenes into 5-amidino-1,2,4-triazoles. ARKIVOC. 2007. Vol. 16. Р. 156–172. (https://doi.org/10.3998/ark.5550190.0008.g17).
    53. Korotkikh N. І., Cowley А. H., Moore J. А., Glinyanaya N. V., Panov І. S., Rayenko G. F., Pekhtereva T. М., Shvaika О. P. Reaction of 1-tert-Butyl-3,4-Diphenyl-1,2,4-Triazol-5-ylidenes with a Malonic Ester. Org. Biomol. Chem. 2008. Vol. 1. P. 195–199. (https://doi.org/10.1039/B712885A).
    54. Glinyanaya N. V., Saberov V. Sh., Korotkikh N. I., Cowley A. H., Butorac R. R., Evans D. A., Pekhtereva T. M., Popov A. F., Shvaika O. P. Syntheses of sterically shielded stable carbenes of the 1,2,4-triazole series and their corresponding palladium complexes: efficient catalysts for chloroarene hydrodechlorination. Dalton Trans. 2014. Vol. 43. P. 16227–16237. (https://doi.org/10.1039/C4DT01353K).
    55. Enders D., Breuer K., Raabe G., Runsink J., Teles J. H., Melder J. P., Ebel K., Brode S. Preparation, Structure, and Reactivity of 1,3,4‐Triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazol‐5‐ylidene, a New Stable Carbene. Angew. Chem. Int. Ed. Engl. 1995. Vol. 34(9). P. 1021–1023. (httpі://doi.org/10.1002/anie.199510211).
    56. Glinyanaya N. V., Korotkikh N. І., Cowley A. H., Williams O., Jones R. A., Lynch V. M., Kiselyov А. V., Rayenko G. F., Derevenets M. A., Ryabitsky A. B., Esarte Palomero O., Shvaika O. P. Sterically Shielded Stable Carbenes and Biscarbenes of the 1,2,4-Triazole Series. A New Method for the Preparation of 1,3,4-Triaryl-1,2,4-triazol-5-ylidenes. ChemistrySelect. 2018. Vol. 3. P. 5244–5248. (https://doi.org/10.1002/slct.201800658).
    57. Korotkikh N. І., Kiselyov A.V., Rayenko G. F., Oliinik M.M., Shvaika О. P. The first stable conjugated biscarbene. Rep. Ukr. Nation. Acad. Sci. 2003. Vol. 6. P. 142–146 (in Ukrainian).
    58. Кiselyov А. V., Кorotkikh N. I., Cowley А. H., Мoore J. А., Pekhtereva Т. М., Shvaika О. P. Synthesis of heteroaromatic conjugated biscarbenes of the 1,2,4-triazole series and their properties. Arkivoc. 2008. Vol. 15. P. 329–334. (https://doi.org/10.3998/ark.5550190.0009.f29).
    59. Knishevitsky A. V., Korotkikh N. I., Cowley A. H., Moore J. A., Pekhtereva T. M., Shvaika O. P., Reeske G. Copper(I) halide complexes of the new 4,4'-bridged heteroaromatic biscarbenes of the 1,2,4-triazole series. J. Organomet. Chem. 2008. Vol. 693. P. 1405–1411. (https://doi.org/10.1016/j.jorganchem.2007.07.056).
    60. Schaper L.-A., Wei X., Altmann P. J., Öfele K., Pöthig A., Drees M., Mink J., Herdtweck E., Bechlars B., Herrmann W. A., Kühn F. E. Synthesis and Comparison of Transition Metal Complexes of Abnormal and Normal Tetrazolylidenes: A Neglected Ligand Species. Inorg. Chem. 2013. Vol. 52(12). P. 7031–7044. (https://doi.org/10.1021/ic4005449).
    61. Arduengo A. J. III, Goerlich J. R., Marshall W. J. A Stable Thiazol-2-ylidene and Its Dimer. Liebigs Ann. 1997. P. 365–374. (https://doi.org/10.1002/jlac.199719970213).
    62. Alder R. W., Blake M. E., Bortolotti C., Bufali S., Butts C. P., Linehan E., Oliva J. M., Orpen A. G., Quayle M. J. Complexation of stable carbenes with alkali metals. J. Chem. Soc. Chem. Commun. 1999. P. 241–242. (https://doi.org/10.1039/A808951E).
    63. Hudnall T. W., Bielawski C. W. An N,N΄-Diamidocarbene: Studies in C-H Insertion, Reversible Carbonylation and Transition-Metal Coordination Chemistry. J. Am. Chem. Soc. 2009. Vol. 131. P. 16039–16041. (https://doi.org/10.1021/ja907481w).
    64. Moerdyk J. P., Schilter D., Bielawski C. W. N,N' Diamidocarbenes: Isolable Divalent Carbons with Bona Fide Carbene Reactivity. Acc. Chem. Res. 2016. Vol. 49. P. 1458–1468. (https://doi.org/10.1021/acs.accounts.6b00080).
    65. Alder R. W., Allen P. R., Murray M., Orpen A. G. Bis(diisopropyl¬amino)¬carbene. Angew. Chem. Int. Ed. Engl. 1996. Vol. 35(10). P. 1121–1123 (https://doi.org/10.1002/anie.199611211).
    66. Otto M., Conejero S., Canac Y., Romanenko V. D., Rudzevitch V., Bertrand G. Mono- and Diaminocarbenes from Chloroiminium and -amidiniumSalts: Synthesis of Metal-Free Bis(dimethylamino)carbene. J. Am. Chem. Soc. 2004. Vol. 126. P. 1016–1017. (https://doi.org/10.1021/ja0393325).
    67. Soleilhavoup M., Bertrand G. Cyclic(Alkyl)(Amino)Carbenes (CAACs): Stable Carbenes on the Rise. Acc. Chem. Res. 2015. Vol. 48. P. 256–266. (https://doi.org/10.1021/ar5003494).
    68. Roy S., Mondal K. C., Roesky H. W. Cyclic Alkyl(amino) Carbene Stabilized Comp¬lexes with LowCoordinate Metals of Enduring Nature. Acc. Chem. Res. 2016. Vol. 49. P. 357–369. (https://doi.org/10.1021/acs.accounts.5b00381).
    69. Martin D., Lassauque N., Donnadieu B., Bertrand G. A Cyclic Diamino¬car¬bene with a Pyramidalized Nitrogen Atom: A Stable N-Heterocyclic Carbene with Enhanced Electro-philicity. Angew. Chem. Int. Ed. 2012. Vol. 51. P. 6172–6175; Angew. Chem. 2012. Vol. 124. P. 6276–6279. (https://doi.org/10.1021/jo900646410.1002/anie.201202137).
    70. Aldeco-Perez E., Rosenthal A. J., Donnadieu B., Parameswaran P., Frenking G., Bertrand G. Isolation of a C5-Deprotonated Imidazolium, a Crystalline “Abnormal” N-Heterocyclic Carbene. Science. 2009. Vol. 326. P. 556–559. (https://doi.org/10.1021/jo900646410.1126/science.1178206).
    71. Lavallo V., Dyker C. A., Donnadieu B., Bertrand G. Synthesis and Ligand Properties of Stable Five-Membered-Ring Allenes Containing Only Second-Row Elements. Angew. Chem. Int. Ed. 2008. Vol. 47. P. 5411–5414 (https://doi.org/10.1021/jo900646410.1002/anie.200801176).
    72. Fernandez I. L., Dyker C. A., DeHope A., Donnadieu B., Frenking G., Bertrand G. Exocyc¬lic Delocalization at the Expense of Aromaticity in 3,5-bis(π-Donor) Substituted Pyrazolium Ions and Corresponding Cyclic Bent Allenes. J. Am. Chem. Soc. 2009. Vol. 131. P. 11875–11881. (https://doi.org/10.1021/ja903396e).
    73. Dyker C. A., Lavallo V., Donnadieu B., Bertrand G. Synthesis of an Extremely Bent Acyclic Allene (A “Carbodicarbene”): A Strong Donor Ligand. Angew. Chem. 2008. Vol. 120. P. 3250–3253. (https://doi.org/10.1002/anie.200705620).
    74. Melaimi M., Soleilhavoup M., Bertrand G. Stable Cyclic Carbenes and Related Species beyond Diaminocarbenes. Angew. Chem. Int. Ed. 2010. Vol. 49. P. 8810–8849. (https://doi.org/10.1002/anie.201000165).
    75. Korotkikh N. I., Okolovska L. G., Saberov V. Sh., Rayenko G. F., Shvaika O.P. Synthesis of complexes of superbasic carbenes of the imidazole series. Proceedings of the IV Intern. sci.-pract. confer. «Coordination compounds: synthesis and properties», September 27–28 2018. Nizhin, 2018. P. 37 (in Ukrainian).
    76. Korotkikh N. I., Kiselyov A. V., Pekhtereva T. M., Shvaika O. P. Cowley A. H., Jones J. N. Chelated heteroaromatic anionocarbene complexes as a new type of carbenoid structures. Rep. Ukr. Nation. Acad. Sci. 2005. Vol. 6. P. 150–153 (in Ukrainian).
    77. Korotkikh N. I., Shvaika O. P., Rayenko G. F., Kiselyov A. V., Knishevitsky A. V., Cowley A. H., Jones J. N., Macdonald C.L.B. Stable Heteroaromatic Carbenes of the Benzimidazole and 1,2,4-Triazole Series. ARKIVOC. 2005. Vol. 8. Р. 10–43. (https://doi.org/10.3998/ark.5550190.0006.803).
    78. Shvaika O. P., Korotkikh N. I., Aslanov A. F. Heteroaromatic carbenes (review). Chem Heterocycl Compd. 1992. Vol. 28. P. 971–984. (https://doi.org/10.1007/BF00531470).
    79. Soleilhavoup M., Baceiredo A., Treutler O.,. Ahlrichs R, Nieger M., Bertrand G. Synthesis and X-ray crystal structure of [(iso-Pr2N)2P(H)CP(N-isoPr2)2]+CF3SO3–: a carbene, a cumulene, or a phosphaacetylene? J. Amer. Chem. Soc. 1992. Vol. 114. P. 10959–10961. (https://doi.org/10.1021/ja00053a042).
    80. Igau A., Grutzmacher H., Baceiredo A., Bertrand G. Analogous α,α'-Bis-Carbenoid Triply Bonded Species: Synthesis of a Stable λ3-P hosphinocarbene-λ5-Phosphaacetylene, J. Amer. Chem. Soc. 1988. Vol. 110. P. 6463–6466. (https://doi.org/10.1021/ja00227a028).
    81. Korotkikh N. І., Kiselyov A. V., Rayenko G. F., Opeida I. O., Shvaika О. P. Comparative estimation of stabilization of conjugated and aromatic compounds via enthalpies of isodesmic reactions. Proc. Shevchenko Sci. Soc. Chem. Sci. 2008. Vol. 21. P. 7–63 (in Ukrainian). (http://dspace.nbuv.gov.ua/handle/123456789/74094).
    82. O’Donoghue A-M.C., Massey R.S. Acid-base chemistry of carbenes. In Contemporary Carbene Chemistry, 1th Ed. Ed. by R. A. Moss and M. P. Doyle; John Wiley & Sons, Inc., 2014. P. 92–103.
    83. Gronert S., Keeffe J. R. Identity Hydride-Ion Transfer from C-H Donors to C Acceptor Sites. Enthalpies of Hydride Addition and Enthalpies of Activation. Comparison with C…H…C Proton Transfer. An ab Initio Study. J. Am. Chem. Soc. 2005. Vol. 127. P. 2324–2333. (https://doi.org/10.1021/jo900646410.1021/ja044002l).
    84. Gronert S., Keeffe J. R., More O’Ferrall R. A. Correlations between Carbene and Carbenium Stability: Ab Initio Calculations on Substituted Phenylcarbenes, Nonbenzenoid Arylcarbenes, Heteroatom-Substituted Carbenes, and the Corresponding Carbocations and Hydrogenation Products. J. Org. Chem. 2009. Vol. 74. P. 5250–5259. (https://doi.org/10.1021/jo9006464).
    85. Korotkikh N., Rayenko G., Saberov V., Shvaika O. Dimerization energies as an important factor of the carbene stability. І. Imidazol-2-ylidenes. Proc. Shevchenko Sci. Soc. Chem. Sci. 2019. Vol. 56. P. 7–22 (in Ukrainian). (https://doi.org/10.1021/jo9006464).
    86. Korotkikh N., Rayenko G., Saberov V., Yenya V., Glinyanaya N., Nechitailov M., Shvaika O. Dimerization energies as an important factor of the carbene stability. ІІ. N,N'-Disubstituted azolylidenes and systems with enhanced electron donicity. Proc. Shevchenko Sci. Soc. Chem. Sci. 2019. Vol. 56. P. 23–34 (in Ukrainian). (https://doi.org/10.37827/ntsh.chem.2019.56.023).
    87. Korotkikh N., Rayenko G., Saberov V., Yenya V., Knishevitsky A., Shvaika O. Dimerization energies as an important factor of the carbene stability. ІІІ. Fused and novel high electron donating systems. Proc. Shevchenko Sci. Soc. Chem. Sci.. 2019. Vol. 56. P. 35–44 (in Ukrainian). (https://doi.org/10.37827/ntsh.chem.2019.56.035).
    88. Korotkikh N. І., Rayenko G. F., Saberov V. Sh., Yenya V. I., Shvaika O. P. New approaches to the estimation of carbene stability. J. Org. Pharm. Chem. 2019. Vol. 17(4). P. 18–27 (in Ukrainian). (https://doi.org/10.24959/ophcj.19.183372).
    89. Moss R. A. Carbenic Reactivity Revisited. Acc. Chem. Res. 1989. Vol. 22. P. 15–21. (https://doi.org/10.1021/ar00157a003).
    90. Korotkikh N. І., Rayenko G. F., Saberov V. Sh., Yenya V. I., Shvaika O. P. Electronic properties of carbenes. J. Org. Pharm. Chem. 2019. Vol. 17(4). Р. 28–36 (in Ukrainian). (https://doi.org/10.24959/ophcj.19.183342).

How to Cite

Korotkikh N., Rayenko G., Saberov V., Yenya V., Glinyanaya N., Avksentiev A., Shvaika O. PHILICITY OF CARBENES. A NEW VIEW. Proc. Shevchenko Sci. Soc. Chem. Sci. 2020 Vol. LX. P. 85-106.

Download the pdf