Evgenia BILA, Daryna SOLTYS, Mykola OBUSHAK
Ivan Franko National University of Lviv, Kyryla i Mefodiy Str., 6, 79005 Lviv, Ukraine, e-mail: bila.evgenia@gmail.com
DOI: https://doi.org/10.37827/ntsh.chem.2020.60.031
THREE-COMPONENT REACTIONS OF UNSATURATED COMPOUNDS WITH ARENEDIASONIUM SALTS AND NEUTRAL NUCLEOPHILS. ARYLSULFONYLATION
The results of recent achievements on the interaction of arenediazonium salts with unsaturated compounds in the presence of neutral nucleophiles are summarized. New examples of multicomponent transformations with the participation of such neutral nucleophiles as CO (arylcarbonylation), NO (arylnitrosylation), aceto¬nitrile (aminoarylation), SO2 (arylsulfonylation) and others are given. These reactions can be applied to alkenes, alkynes, aromatic compounds. Mild reaction conditions allow the use of reagents with different functional groups. Reactions of this type open up the possibility of one-step production of complex poly¬functional compounds. Catalytic systems are quite diverse for these transformations: it is catalysis involving transition metals, platinum group metals. Prospects for the use of arenediazonium salts in multicomponent transfor¬ma-tions according to the concepts of «green» chemistry are outlined – it is photoinitiation by visible and ultraviolet radiation, acid-base catalysis. The role of catalysis in the process, the role of complex intermediates and reaction mechanisms are analyzed. For most processes, the SET reaction mechanism is implemented through the formation of an alkene intermediate ion radical, the stability of which depends on the nature of the substituent near the double bond. Particular attention is paid to arylsulfonylation reactions, because the arylsulfonyl group is one of the many important biologically active molecules. Arylsulfonylation reactions of alkenes with the participation of transition metals or under conditions of metal-free catalysis are considered. Examples of arylsulfonylation of the C=C bond using sulfinic acids, their salts and hydrazides are given. An available method for producing functionalized sulfones is the multicomponent interaction of arenediazonium salts, alkenes and SO2. The arylsulfonylation reaction occurs as a series of successive reactions involving the generation of a catalyst, the decomposition of arenediazonium cations, the addition of an aryl group, a nucleophile to a multiple bond, and the formation of the final products. The use of functionalized alkenes allows to obtain functionalized arylsulfones in one step. This functionalization expands the scope of use of arylsulfones, in particular, for studies of biological activity. The progress made in the development of effective strategies for the production of arylsulfones opens new opportunities for further research.
Keywords: arylation, arylsulfonylation, arenediazonium salts, multicomponent reactions, Meerwein reaction.
References:
-
1. Heinrich M.R. Intermoleculer Olefin functionalisation Involving Aryl Radicals Generated from Arenediazonium
Salts. Chem. Eur. J. 2009. Vol. 15. P. 820–833. (https://doi.org/10.1002/chem.200801306).
2. Chernyak N., Buchwald S. Continuous-Flow Synthesis of Monoarylated Acetaldehydes Using Aryldiazonium Salts. J.
Am. Chem. Soc. 2012. Vol. 134. P. 12466–12469. (https://doi.org/10.1021/ja305660a).
3. Ogerc N., Grognec E.L, Felpin F-X. Handling diazonium salts in flow for organic and material chemistry. Org.
Chem. Front. 2015. Vol. 2. P. 590–614. (https://doi.org/10.1039/c5qo00037h).
4. Salas C., Heinrich M. R. Fixation and recycling of nitrogen monoxide through carbo-nitrosation reactions. Green
Chem. 2014. Vol. 16(6). P. 2982–2987. (https://doi.org/10.1039/c3gc42432d).
5. Salas C., Blank O., Heinrich M. R. Radical Carbonitrosation and Recycling of the Waste Gas Nitrogen Monoxide.
Chemistry. A European Journal. 2011. Vol. 17(34). P. 9306–9310. (https://doi.org/10.1002/chem.201101565).
6. Hofman D., Hofmann J., Hofmann L-E., Hofmann L., Heinrich M. R. Denitrification Combined with Diazotization of
Anilines and the Synthesis of 4′-Chlorobiphenyl-2,5-diamine and 1-Chloro-4-iodobenzene. Org. Process Res. Dev.
2015. Vol. 19. P. 2075–2084. (https://doi.org/10.1021/acs.oprd.5b00298).
7. Hari D.P., König B. Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun (Camb). 2014. Vol.
50(51). P. 6688–6699. (https://doi.org/10.1039/c4cc00751d).
8. Tang S., Zhou D., Deng Y., Li Z., Yang Y., He J., Wang Y. Copper-catalyzed Meerwein carboarylation of alkenes
with anilines to form 3-benzyl-3-alkyloxindole. Sci China Chem. 2015. Vol. 58(4). P. 684–688.
(https://doi.org/10.1007/s11426-014-5158-z).
9. Neumann M., Zeitler K. Cooperative Hydrogen-Bond-Promoted Organophotoredox Catalysis Strategy for Highly
Diastereoselective, Reductive Enone Cyclization. Chem. Eur. J. 2013. Vol. 19. P. 6950–6955.
(https://doi.org/10.1002/chem.201204573).
10. Neumann M., Füldner S., König B., Zeitler K. Cooperative Asymmetric Organophotoredox Catalysis with Visible
Light. Angew. Chem. Int. Ed. 2011. Vol. 50. P. 951–954. (https://doi.org/10.1002/anie.201002992).
11. Galli C. Radical reaction of arenediazonium ions: an easy entry into the chemistry of the aryl radical. Chem.
Rev. 1988. Vol. 88. P.765–792. (https://doi.org/10.1021/cr00087a004).
12. 12. Bila E., Obushak M. Mechanism of reaction of unsaturated compounds with arendiazonium salts. Ion radical
attachment to a multiple bond. Proc. Shevchenko Sci. Soc. Chem. Sci. 2010. Vol. 25. P. 111–141. (in Ukrainian).
13. Rondestvedt C. S. Arylation of unsaturated compounds by diazonium salts (the Meerwein arylation reaction).
Organic Reactions. N.Y. - L.: John Wiley and Sons. 1976. Vol. 24. P. 225–259. (https://doi.org/10.1002/0471264180.or024.03).
14. Bila E., Ganushchak M., Obushak M. Arencarbonylation of styrene by arenediazonium salts carbon monooxide.
Visnyk Lviv Univ., Ser. Khim. 2002. Vol. 41. P. 164–166 (in Ukrainian).
15. Majek M., Wangelin A.J. Metal-Free Carbonylations by Photoredox Catalysis. Angew. Chem. 2014. Vol. 54(7). P.
2270–2274. (https://doi.org/10.1002/anie.201408516).
16. Miyabe H. Organic Reactions Promoted by Metal-Free Organic Dyes Under Visible Light Irradiation. IntechOpen.
2018. (https://doi.org/10.5772/intechopen.70507).
17. Hari P.D., Hering T., König B. The Photoredox-Catalyzed Meerwein Addition Reaction: Intermolecular
Amino-Arylation of Alkenes. Angewandte Chemie International Edition. 2013. Vol. 53(3). P. 725–728.
(https://doi.org/10.1002/anie.201307051).
18. Jiang X. Sulfur atom transfer (SAT) reaction. Phosphorus, Sulfur Silicon Relat. Elem. 2017. Vol. 192(2). P.
169–171. (https://doi.org/10.1080/10426507.2017.1250762).
19. Otocka S., Kwiatkowska M., Madalińska L., Kiełbasiński P. Chiral Organosulfur Ligands/ Catalysts with a
Stereogenic Sulfur Atom: Applications in Asymmetric Synthesis. Chem. Rev. 2017. Vol. 117. P. 4147–4181.
(https://doi.org/10.1021/acs.chemrev.6b00517).
20. Li Y., Fan Y. Recent advances in C–S bond construction to synthesize sulfone //Synthetic Communications. 2019.
Vol. 49(23). P. 3227–3264. (https://doi.org/10.1080/00397911.2019.1656747).
21. Meerwein H., Büchner E., Emster K. Über die Einwirkund aromatischer Diazoverbindungen auf α,β-ungeSаttigte
Carbonylverbindungen. J. Prakt. Chem. 1939. Vol. 152(2). P. 237–266. (https://doi.org/10.1002/prac.19391520705).
22. Fürst M. C., Gans E., Böck M. J., Heinrich M. R. Visible-Light-Induced, Catalyst-Free Radical Arylations of
Arenes and Heteroarenes with Aryldiazonium Salts. Chem. Eur. J. 2017. Vol. 23(61). P. 15312–15315.
(https://doi.org/10.1002/chem.201703954).
23. Obushak N. D., Buchinskii A. М., Bilaya E.E., Ganushchak N.I. On the interaction of β-nitrostyrene and
benzalacetone with Arenediazonium Chlorides and SO2. Russ. J. Obsch. Chem. 1997. Vol.67(8). P. 1405. (in
Russian).
24. Obushak N.D., Bila E.E., Ganushchak N.I. Interaction of α- and β-halogen-styrenes with aryldiazonium chlorides
and sulfur dioxide. Synthesis of substituted styrylsulfones. Russ. J. Org. Chem. 1991. Vol. 27(11). P. 2372–2376.
(in Russian).
25. Bila E., Rohovyk М. Arylsulfonylation of phenylacetylene. Synthesis α-chloro¬styryl¬aryl-sulfones. Visnyk Lviv
Univ., Ser. Khim. 2019. Vol. 60. P. 275–279. (in Ukrainian). (https://doi.org/10.30970/vch.6002.275).
26. Obushak N. D., Lyakhovich M. B., Bilaya E. E. Arenediazonium Tetrachlorocuprates(II). Modified Versions of the
Meerwein and Sandmeyer. Russ. J. Org. Chem. 2002. Vol. 38(1). P. 38–46. (in Russian).
(https://doi.org/10.1023/a:1015394423091).
27. Kadari L., Palakodety R. K., Yallapragada L. P. Iodine-Catalyzed Facile Approach to Sulfones Employing TosMIC
as a Sulfonylating Agent. Org. Letters. 2017. Vol. 19(10). P. 2580–2583.
(https://doi.org/10.1021/acs.orglett.7b00896).
28. Xiang Y. Kuang Y., Wu J. Generation of β-Halovinylsulfones through a Multicomponent Reaction with Insertion of
Sulfur Dioxide. Chem. Eur. J. 2017. Vol. 23. P. 6996–6999. (https://doi.org/10.1002/chem.201701465).
29. Bila E., Obushak M. Copper-catalyzed hydroxyarylsulfonylation of 2-methylpropene using aryldiazonium salts and
sulfur dioxide. Visnyk Lviv Univ., Ser. Khim. 2019. Vol. 60. P. 309–315. (in Ukrainian).
(https://doi.org/10.30970/vch.6002.309).
30. Jiang Q., Xu B., Jia J., Zhao A., Zhao Y.-R., Li Y.-Y., He N.-N., Guo C.-C. Copper-Catalyzed Aerobic
Decarboxylative Sulfonylation of Cinnamic Acids with Sodium Sulfinates: Stereospecific Synthesis of (E)-Alkenyl
Sulfones. J. Org. Chem. 2014. Vol.79. P. 7372–7379. (https://doi.org/10.1021/jo5010845).
31. Bila E., Ganushchak N. Cuprous catalytic arenesulphonylation of cinnamic acid by aryldiazonium chlorides and
SO2. Visnyk Lviv Univ., Ser. Khim. 2000. Vol. 39. P. 256–258.
32. Wei W., Li J., Yang D., Wen J., Jiao Y., You J., Wang H. Copper-Catalyzed Highly Selective Direct
Hydrosulfonylation of Alkynes with Arylsulfinic Acids Leading to Vinyl Sulfones. Org. Biomol. Chem. 2014. Vol. 12.
P. 1861–1864. (https://doi.org/10.1039/c3ob42522c).
33. Gui Q., Han K., Liu Z., Su Z., He X., Jiang H., Tian B., Li Y.E. Selective Synthesis of Vinyl Sulfones via
Silver-Catalyzed Sulfonylation of Styrenes. Org. Biomol. Chem. 2018. Vol. 16. P. 5748–5751.
(https://doi.org/10.1039/C8OB01502C).
34. Wei W., Wen J., Yang D., Wu M., You J., Wang H. Iron-Catalyzed Direct Difunctionalization of Alkenes with
Dioxygen and Sulfinic Acids: A Highly Efficient and Green Approach to β-Ketosulfones. Org. Biomol. Chem. 2014.
Vol. 12. P. 7678–7681. (https://doi.org/10.1039/C4OB01369G).
35. Yuan Z., Wang H. Y., Mu X., Chen P., Guo Y-l., Liu G. Highly Selective Pd-Catalyzed Intermolecular
Fluorosulfonylation of Styrenes. J. Am. Chem. Soc. 2015. Vol. 137. P. 2468–2471.
(https://doi.org/10.1021/ja5131676).
36. Emer E., Pfeifer L., Brown J. M., Gouverneur V. Cis-Specific Hydrofluorination of Alkenylarenes under
Palladium Catalysis through an Ionic Pathway. Angew. Chem. Int. Ed. Engl. 2014. Vol. 53. P. 4181–4185.
(https://doi.org/10.1002/anie.201310056).
37. Zhang G., Zhang L., Yi H., Luo Y., Qi X., Tung C.-H., Wu L.-Z., Lei A. Visible-Light Induced Oxidant-Free
Oxidative Cross-Coupling for Constructing Allylic Sulfones from Olefins and Sulfinic Acids. Chem. Commun. (Camb.)
2016. Vol. 52. P. 10407–10410. (https://doi.org/10.1039/c6cc04109d).
38. Yang F. L., Tian S. K. Sulfonyl Hydrazides as Sulfonyl Sources in Organic Synthesis. Tetrahedron Lett. 2017.
Vol. 58. P. 487–504. (https://doi.org/10.1016/j.tetlet.2016.12.058).
39. Wu X.-M., Wang Y. Mild and Base-Free Synthesis of Unsymmetrical Diaryl Sulfones from Arylboronic Acids and
Arylsulfonyl Hydrazides. Synlett. 2014. Vol. 25. P. 1163–1167. (https://doi.org/10.1055/s-0033-1341023).
40. Li X., Xu Y., Wu W., Jiang C., Qi C., Jiang H. Copper-Catalyzed Aerobic Oxidative NS Bond Functionalization
for C-S Bond Formation: regio- and Stereoselective Synthesis of Sulfones and Thioethers. Chemistry. 2014. Vol. 20.
P. 7911–7915. (https://doi.org/10.1002/chem.201402815).
41. Rong G., Mao J., Yan H., Zheng Y., Zhang G. Iron/Copper Co-Catalyzed Synthesis of Vinyl Sulfones from Sulfonyl
Hydrazides and Alkyne Derivatives. J. Org. Chem. 2015. Vol. 80. P. 4697–4703.
(https://doi.org/10.1021/acs.joc.5b00558).
42. Li S., Li X., Yang F., Wu Y. Copper Catalyzed Direct Decarboxylative Hydrosulfonylation of Aryl Propiolic
Acids with Sulfonylhydrazides Leading to Vinylsulfones. Org. Chem. Front. 2015. Vol. 2. P. 1076–1079.
(https://doi.org/10.1039/C5QO00212E).
43. Taniguchi T., Idota A., Ishibashi H. Iron-Catalyzed Sulfonyl Radical Formations from Sulfonylhydrazides and
Oxidative Addition to Alkenes. Org. Biomol. Chem. 2011. Vol. 9. P. 3151–3153.
(https://doi.org/10.1039/c0ob01119c).
44. Cai S., Chen D., Xu Y., Weng W., Li L., Zhang R., Huang M. Visible-LightPromoted Syntheses of b-Keto Sulfones
from Alkynes and Sulfonylhydrazides. Org. Biomol. Chem. 2016. Vol. 14. P. 4205–4209.
(https://doi.org/10.1039/c6ob00617e).
45. Wei W., Liu C., Yang D., Wen J., You J., Suo Y., Wang H. Copper-Catalyzed Direct Oxysulfonylation of Alkenes
with Dioxygen and Sulfonylhydrazides Leading to b-Ketosulfones. Chem. Commun. (Camb.) 2013. Vol. 49. P.
10239–10241. (https://doi.org/10.1039/c3cc45803b).
46. Liu Y., Zheng G., Zhang Q., Li Y., Zhang Q. Copper-Catalyzed Three Component Regio- and Stereospecific
Selenosulfonation of Alkynes: Synthesis of (E)-b-Selenovinyl Sulfones. J. Org. Chem. 2017. Vol. 82. P.
2269–2275. (https://doi.org/10.1021/acs.joc.6b03049).
47. Reddy M. A., Reddy P. S., Sreedhar B. Iron(III) Chloride-Catalyzed Direct Sulfonylation of Alcohols with
Sodium Arenesulfinates. Adv. Synth. Catal. 2010. Vol. 352. P.1861–1869. (https://doi.org/10.1002/adsc.200900905).
48. Wang T.-T., Wang F.-X., Yang F.-L., Tian S.-K. Palladium-Catalyzed Aerobic Oxidative Coupling of
Enantioenriched Primary Allylic Amines with Sulfonyl Hydrazides Leading to Optically Active Allylic Sulfones.
Chem. Commun. (Camb.) 2014. Vol. 50. P. 3802–3805. (https://doi.org/10.1039/c4cc00275j).
49. Xu J.-K., Gu Y., Tian S.-K. Enantiospecific Allylic Alkylation of Substituted Hydrazines with Allylic
Alcohols. Chin. J. Org. Chem. 2015. Vol. 35. P. 618. (https://doi.org/10.6023/cjoc201412049).
50. Xu K., Khakyzadeh V., Bury T., Breit B. Direct Transformation of Terminal Alkynes to Branched Allylic
Sulfones. J. Am. Chem. Soc. 2014. Vol. 136. P. 16124–16127. (https://doi.org/10.1021/ja509383r).
51. Nguyen B., Emmet E. J., Willis M. C. Palladium-Catalyzed Aminosulfonylation of Aryl Halides. J. Am. Chem. Soc.
2010. Vol. 132. P. 16372–16373. (https://doi.org/10.1021/ja1081124).
52. Emmett E. J., Hayter B. R., Willis M. C.Palladium-Catalyzed Three-Component Diaryl Sulfone Synthesis
Exploiting the Sulfur Dioxide Surrogate DABSO. Angew. Chem. Int. Ed. Engl. 2013. Vol. 52. P. 12679–12683.
(https://doi.org/10.1002/anie.201305369).
53. Zhang J., Xie W., Ye S., Wu J. Synthesis of b-Hydroxysulfones through a Copper(II)-Catalyzed Multicomponent
Reaction with the Insertion of Sulfur Dioxide. Org. Chem. Front. 2019. Vol. 6. P. 2254–2259.
(https://doi.org/10.1039/C9QO00520J).
54. Ye S., Wu J. A. Palladium-Catalyzed Reaction of Aryl Halides, Potassium Metabisulfite, and Hydrazines. Chem.
Commun. (Camb.) 2012. Vol. 48. P. 10037–10039. (https://doi.org/10.1039/c2cc34957d).
55. Shavnya A., Coffey S. B., Smith A. C., Mascitti V. Palladium-Catalyzed Sulfination of Aryl and Heteroaryl
Halides: Direct Access to Sulfones and Sulfonamides. Org. Lett. 2013. Vol. 15. P. 6226–6229.
(https://doi.org/10.1021/ol403072r).
56. Shyam P. K., Son S., Jang H.-Y. Copper-Catalyzed Sulfonylation of Alkenes and Amines by Using Thiosulfonates
as a Sulfonylating Agent. Eur. J. Org. Chem. 2017. Vol. 34. P. 5025–5031.
(https://doi.org/10.1002/ejoc.201700971).
57. Son S., Shyam P. K., Park H., Jeong I., Jang H. Y. Complementary Strategy for Regio¬selec¬ti¬ve Synthesis of
Diverse β-Hydroxysulfones from Thiosulfonates. Eur. J. Org. Chem. 2018. Vol. 25. P. 3365–3371.
(https://doi.org/10.1002/ejoc.201800778).
58. Chu X.-Q., Ge D., Loh T.-P., Shen Z.-L. Oxidant-Directed Chemoselective Sulfonylation and Sulfonyloximation of
Alkenes via Cleaving the C–S Bond in TosMIC. Org. Chem. Front. 2019. Vol. 6. P. 835–840.
(https://doi.org/10.1039/C8QO01346B).
59. Chu X.-Q., Meng H., Xu X.-P., Ji S.-J. One-Pot Synthesis of Allylic Sulfones, Ketosulfones, and Triflyl
Allylic Alcohols from Domino Reactions of Allylic Alcohols with Sulfinic Acid Under Metal-Free Conditions.
Chemistry. 2015. Vol. 21. P. 11359–11368. (https://doi.org/10.1002/chem.201500469).
60. Pramanik M., Choudhuri K., Mal P. N. Iodosuccinimide as Bifunctional Reagent in (E)-Selective C(sp2)H
Sulfonylation of Styrenes. Asian J. Org. Chem. 2019. Vol. 8. P. 144–150.
(https://doi.org/10.1002/ajoc.201800644).
61. Kumar S., Singh R., Singh K. N. AIBN-Initiated Denitrative Cross-Coupling Reactions of b-Nitrostyrenes with
Sulfonyl Hydrazides/Disulfides: A Metal-Free Approach towards Vinyl Sulfones. Asian J. Org. Chem. 2018. Vol.7. P.
359–362. (https://doi.org/10.1002/ajoc.201700632).
62. Nie G., Deng X., Lei X., Hu Q., Chen Y. Mn(III)-Mediated Regioselective Synthesis of (E)-Vinyl Sulfones from
Sodium Sulfinates and Nitro-Olefins. RSC Adv. 2016. Vol. 6. P. 75277–75281.
(https://doi.org/10.1039/C6RA17842A).
63. Singh R., Allam B. K., Singh N., Kumari K., Singh S. K., Singh K. N. Direct Metal-Free Decarboxylative Sulfono
Functionalization (DSF) of Cinnamic Acids to a,b-Unsaturated Phenyl Sulfones. Org. Lett. 2015. Vol. 17. P.
2656–2659. (https://doi.org/10.1021/acs.orglett.5b01037).
64. Li P., Wang G.-W. Visible-Light-Induced Decarboxylative Sulfonylation of Cinnamic Acids with Sodium Sulfinates
by Using Merrifield Resin Supported Rose Bengal as a Catalyst. Org. Biomol. Chem. 2019. Vol. 17. P. 5578–5585.
(https://doi.org/10.1039/c9ob00790c).
65. Chen P., Zhu C., Zhu R., Wu W., Jiang H. MnO2-Promoted Oxidative Radical Sulfonylation of Haloalkynes with
Sulfonyl Hydrazides: C(sp)-S Bond Formation towards Alkynyl Sulfones. Chem. Asian J. 2017. Vol. 12. P. 1875–1878.
(https://doi.org/10.1002/asia.201700550).
66. Ratushnyy M., Kamenova M., Gevorgyan V. A. Mild Light-Induced Cleavage of the S-O Bond of Aryl Sulfonate
Esters Enables Efficient Sulfonylation of Vinylarenes. Chem. Sci. 2018. Vol. 9. P. 7193–7197.
(https://doi.org/10.1039/c8sc02769b).
67. Wang X., Yang M., Xie W., Fan X., Wu J. Photoredox-catalyzed hydrosulfonylation reaction of electrondeficient
alkenes with substituted Hantzsch esters and sulfur dioxide. Chem. Com. 2019. Vol. 55. P. 6010–6013.
(https://doi.org/10.1039/C9CC03004B).
68. Lu Q., Zhang J., Wei F., Qi Y., Wang H., Liu Z., Lei A. Aerobic Oxysulfonylation of Alkenes Leading to
Secondary and Tertiary b-Hydroxysulfones. Angew. Chem. Int. Ed. Engl. 2013. Vol. 52. P. 7156–7159.
(https://doi.org/10.1002/anie.201301634).
69. Lu Q., Zhang J., Zhao G., Qi Y., Wang H., Lei A. Dioxygen-Triggered Oxidative Radical Reaction: direct Aerobic
Difunctionalization of Terminal Alkynes toward b-Keto Sulfones. J. Am. Chem. Soc. 2013. Vol. 135. P. 11481–11484.
(https://doi.org/10.1021/ja4052685).
70. Kariya A., Yamaguchi T., Nobuta T., Tada N., Miura T., Itoh A. Molecular-Iodine-Catalyzed Aerobic Oxidative
Synthesis of b-Hydroxy Sulfones from Alkenes. RSC Adv. 2014. Vol. 4. P. 13191–13194.
(https://doi.org/10.1039/C3RA47863G).
71. Choudhuri K., Achar T. K., Mal P. Iodine-Triggered Aerobic Oxysulfonylation of Styrenes. Adv. Synth. Catal.
2017. Vol. 359. P. 3566–3576. (https://doi.org/10.1002/adsc.201700772).
72. Chen F., Zhou N.-N., Zhan J.-L., Han B., Yu W. Tret-Butyl Nitrite-Mediated Vicinal Sulfoximation of Alkenes
with Sulfinic Acids: A Highly Efficient Approach toward a-Sulfonyl Ketoximes. Org. Chem. Front. 2017. Vol. 4. P.
135–139. (https://doi.org/10.1039/C6QO00535G).
73. Wang B., Tang L., Liu L., Li Y., Yang Y., Wang Z. Base-Mediated Tandem Sulfonylation and Oximation of Alkenes
in Water. Green Chem. 2017. Vol. 19. P. 5794–5799. (https://doi.org/10.1039/C7GC03051G).
74. Wang B., Yan Z., Liu L., Wang J., Zha Z., Wang Z. TBN-Mediated Regio- and Stereo¬selective Sulfonylation and
Oximation (Oximosulfonylation) of Alkynes with Sulfonyl Hydrazines in EtOH/H2O. Green Chem. 2019. Vol. 21. P.
205–212 (https://doi.org/10.1039/c8gc02708k).
How to Cite
Bila Е., Soltys D., Obushak M. THREE-COMPONENT REACTIONS OF UNSATURATED COMPOUNDS WITH ARENEDIASONIUM SALTS AND NEUTRAL NUCLEOPHILS. ARYLSULFONYLATION Proc. Shevchenko Sci. Soc. Chem. Sci. 2020 Vol. LX. P. 31-54.