PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXX 2022

Volodymyr DUTKA1, Galyna MIDYANA2 , Yuriy DUTKA2, Olena PAL’CHIKOVA2

1Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine
e-mail: vdutka@ukr.net

2Department of Physical Chemistry of Fossil Fuels of the Institute of Physical-Organic Chemistry and Coal Chemistry named after L.M. Lytvynenko of the National Academy of Sciences of Ukraine, Naukova Str., 3а, 79060 Lviv, Ukraine

DOI: https://doi.org/10.37827/ntsh.chem.2022.70.090

N-OXIDATION OF THE QUINOLINE BY PEROXY ACIDS IN THE ORGANIC SOLVENTS

The rate oxidation reaction of quinoline with peroxy acid in warious organic solvents was studded. It has been found effective rate constants (k) and activation energy (Ea) studded process. Between the parameters of the transition state ΔН≠ and ΔЅ≠ is a linear relationship, indication the presence of counteraction effect in our series of experiments. The rate of oxidation and activation energy inflation of solvation peroxyacids and quinoline. The reaction medium affects the rate of oxidation. Correlation equations between the rate constants of the reactions in study and the physicochemical parameters of the solvents were proposed. The correlation equation for effective rate constants and the basic physicochemical parameters of solvents at 303 K has the form
lg k = 0.2103 + (11.2719 ±1.7750)f(n) + (1.2126 ± 0.3906)f (ε) + (0.0002 ± 0.0008)B – (0.0209 ± 0.0079)ET – (0.0019 ± 0.0007)δ2 – (0.0130 ± 0.0018)Vм (1)
N = 9; R = 0,9899; S = 0.0591; F = 119.4348,
N = 9; R = 0,9737; S = ±0.0950; F = 30.3963.
Correlation equations for effective rate constants for other temperatures are similar. The correlation equation for effective energies (Ea) of activation and the basic physicochemical parameters of solvents has the form
lg Eак = 4.8998 – (18.7772 ± 0.4915) f(n) + (1.8883 ± 0.1038) f(ε) – (0.0077 ± 0.0002)B – (0.0304 ± 0.0014)Eт + (0.0050 ± 0.0001) δ2 + (0.0108 ± 0.0005)Vм (2)
N = 8; R = 0.9982; S = ±0.0103; F = 1513.94.
The proposed correlation equations relate the parameters of the transition state of the oxidation process and the physic-chemical parameters of solvents.

Keywords: quinoline, oxidation reaction, peroxy acids, activation energy, correlation equation, mechanizm.

References:

    1. Miller V.C, Valentine R.G. Hydrogen Peroxide Decomposition and Qunoline Degradation in the presence of Aquiter Matherial. Water Reserch. 1995. Vol. 29(10). P. 2353–2359. (https://doi.org/10.1016/0043-1354(95)00059-T).
    2. Thomsen A. Degradation of qunoline by wet oxidation – kinetic aspects and reaction mechanismus. Water Reserch. 1998. Vol. 32(1). P. 136–148. (https://doi.org/10.1016/S043-1354(97)00200-5).
    3. Soldatenkov A.T., Temsden A., Kolyadina N.W. Oxidation of heterocyclic compounds by permanganate anion (Review). Chem. of geterocyclyc compounds. 2004. Vol. 50. P. 537–560. (https://doi.org/10.1023/B:COHC.0000037309.88566.de).
    4. Yuan J.-W., Qn L.-B. KMnO4 – ediate direct selective radical cross-coupling: An effective strategy for C2 arylation of quinoline N-oxide with arylboronic acids. Chenese chemical Letters. 2017. Vol. 28. P. 981–985. (https://doi.org/10.1016/j.cclet.2017.01.016).
    5. Prilezhaeva E.N. Prilezhaev Reaction: Electrophilic Oxidation. Moscow: Khimiya, Nauka, 1974 (in Russian).
    6. Dutka V.S., Matsyuk N.V., Dutka Yu.V. Influence of a Reaction Medium on the Oxidation of Aromatic Nitrogen-Containing Compounds by Peroxyacids. Russ. J. Phys. Chem. A. 2011. Vol. 85(1). Р. 45–50.(https://doi.org/10.1134/S0036024411010079).
    7. Lokhov R.E. Kinetics of N-oxidation of compounds of the quinoline series and isomeric benzoquinolines by perbenzoic acid in chloroform and aques dioxane. Chemistry of Heterocyclyc Compaunds. 1981. Vol. 17. P. 72–76. (https://doi.org/10.1007/BF00507096).
    8. Antonovskii V.L. Organic peroxide initiators. Moscow: Khimiya. 1972 (in Russian).
    9. Tolstikov G.A. Hydroperoxide Oxidation. Moscow, Nauka, 1974 (in Russian).
    10. Dutka V.S., Midyana G.G., Dutka Yu.V., Pal’chikova E.Ya, Nagornyak I. Influence of the organic solvents on rate of oxidation of the qunoline by peroxdecanoic acid. Proc. Shevchenko Sci. Chem. Sci. 2019. Vol. 56. P. 89–100. (https://doi.org/10.37827/ntsh.chem.2019.56089).
    11. Dutka V.S., Midyana G.G., Dutka Yu.V., Pal’chikova E.Ya. Oxidation of the acrydine by peroxydecanoic acid in various organic solvents. Proc. Shevchenko Sci. Chem. Sci. 2020. Vol. 60. P. 22–30. (https://doi.org/10.37827/ntsh.chem.2020.60.022).
    12. Dutka V., Kovalskyi Ya., Aksimentyeva O., Tkachuk N., Oshapovska N., Halechco H. Molecular modeling of acrydine oxidation by peroxyacids. Chem. Chem Technol. 2019. Vol. 13(3) P. 334–340. (https://doi.org/10.23939/chcht13.03.334).
    13. Dutka V.S., Midyana G.G., Dutka Yu.V., Pal’chikova E.Ya. Influence of the organic solvents on rate of oxidation of the quinoline by peroxydecanoic acid. Visnyk Lviv University. Series Chemistry. 2019 Vol. 60. P. 449–457. (https://doi.org/10.30970/vch.6002.449).
    14. Kim J., Huang C. Reactivity of peracetic acid with organic compounds. Critical Revie. ACS EST Water 2021. Vol. 1(1). P. 15–33. (https://doi.org/10.1021/acsestwater.0c.00029).
    15. Luukkonen T., Pehkonen S.O. Peracids in water treatment: A critical revive. Enviromenttal Science and technology. 2017. Vol. 47(1). P. 1–39. (https://doi.org/10.1080/10643389.2016.1272343).
    16. Zhang Y., Yue X., Duan Y., Rao Z. A study of the mechanism oxidation qunoline remval from acid solution baset on persulfate-iron systems / RSC Advances. 2020. Vol. 10. P. 12504–12510. (https://doi.org/10.1039/C9RA10556E).
    17. Shulpin G., Shulpina L. Oxidation of organic compounds wigh peroxides catalyzed by polynuclear methal compounds. Catalusis. 2021. Vol. 11(2). P. 1–37. (https://doi.org/10.3390/catal11020186).
    18. Naik L.R., Math N.N. Photo Physical Properties of 8-Hydroxy Qunoline. Indian Journal of Pure and Applied Physics. 2005. Vol. 43(10). P. 793–749.
    19. Tukhvatullin F.H., Jumbaev A., Hushvaktov H., Absanov A. Raman spectra and intermolecular hydrogen bond in solution of qunoline. Ukr. J. Phys. 2012. Vol. 57(2). P. 248–255. (https://doi.org/10.15407/ujpe57.2.248).
    20. Zukovskyi V.Ya. IR-spectrums peroxy pelargonic asids in solutions. Russ. J. Phys. Chem. 1983. Vol. 57(9). P. 2353–2354.
    21. Shriner R., Fuson R., Curtin D., Morril T. The systematic identification of organic compounds. M. Mir 1983, 704 p. (in Russian).
    22. Parker W.E., Riccuti C, Ogg C.L., Swern D. Peroxides II. Preparation, characterization and polarographic behavior of long-chain aliphatic peracids. J. Am. Chem. Soc. 1955. Vol. 77(15). P. 4037–4041. (https://doi.org/10/1021/ja01620a023).
    23. Antonovskii V.L., Buzulanova M.M. Analytical Chemistry of Organic Peroxide Compounds. Moscow. Khimiya. 1978 (in Russian).
    24. Reichard C. Solvents and solvent effects in organic chemistry. VCH. 1988.
    25. Weinberger A, Proskauer E.S., Riddick J.A., Toops E.E. Jr. Organic Solvents. Physical Properties and methods of Purifications, New York: Interscience, 1955.
    26. Gordon F.J., Ford R.F. The chemist’s Companion, А. Handbook of Practical Data/ Techniques and References. New York: Wiley, 1972.
    27. Koppel I.A. Palm V.A. Advances in Linear Free Energy Relationships. London: Plenum. 1972.
    28. Makitra R.G., Turovski A.A, Zaikov E.E. Correlation Analysis in Chemistry of Solution - Utrecht-Boston.: VSP. 2003. (https://doi.org/10.1201/b12185).
    29. Makitra R.G., Pirig Ja.N., Krivelyuk R. Makitra R.G. Available from VINITI - Moscow 1986, № 628–В86 (in Russian).
    30. Dutka V.S., Zagorskaya V.V., Dutka Yu.V., Savitskaya O.I. Thermal Decomposition of Aliphatic Peroxy Acids. Kinetics and Catalysis. 2011. Vol. 52(3). P. 347–351. (https://doi.org/10.1134/S0023159411020054).
    31. Dutka V.S., Zagorskaya V.V., Dutka Yu.V. Catalytic Decompositon of Aliphatic Peroxy Acids. Kinetics and Catalysis. 2010. Vol. 51(3). P. 364–369. (https://doi.org/10.1134/S0023158410030067).
    32. Dutka V.S., Makitra R.G., Dutka Yu.V., Pal’ chikova E.Ya., Matsyuk N.V. Effect of solvents on rate of epoxidations of α-pinene and Δ3-careen with peroxydecanoic acid. Russian Journal of General Chemistry. 2014. Vol. 84(2), P. 298–303. (https://doi.org/10.1134/S107036321402025X).
    33. Dutka V.S., Midyana G.G., Dutka Yu.V., Pal’chikova E.Ya. Effect of organic solvents on the rate of oxidation of sulfoxides with peroxy acids. Russian Journal of general chemistry. 2020. Vol. 90(3). P. 329–334. (https://doi.org/10/1134/S1070363220030020).
    34. Dutka V.S., Midyna G.G., Dutka Yu.V., Pal’chikova E.Ya. Influence of Solvents on the Rate of Thermal Decomposition of Peroxydecanoic Acid. Russian Journal of General Chemistry. 2018. Vol. 88(2). P. 188–194. (https://doi.org/10.1134/S1070363218020020).

How to Cite

Dutka V., Midyana G. Dutka Yu., Pal’chikova O. N-OXIDATION OF THE QUINOLINE BY PEROXY ACIDS IN THE ORGANIC SOLVENTS Proc. Shevchenko Sci. Soc. Chem. Sci. 2022 Vol. LXX. P. 90-101.

Download the pdf