PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXX 2022

Mykola MOROZ1,*, Pavlo DEMCHENKO2, Myroslava PROKHORENKO3, Bohdan RUDYK1, Lyudmyla SOLIAK1, Oksana MYSINA1, Orest PEREVIZNYK2, Oleksandr RESHETNYAK2

1National University of Water and Environmental Engineering, Soborna Str., 11, 33028 Rivne, Ukraine
*e-mail: m.v.moroz@nuwm.edu.ua

2Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine

3Lviv Polytechnic National University, Stepan Banderа Str., 12, 79013 Lviv, Ukraine

DOI: https://doi.org/10.37827/ntsh.chem.2022.70.053

THERMODYNAMIC PROPERTIES OF THE AgGaGe3Se8 COMPOUND AT Т≤500 K DETERMINED BY THE EMF METHOD

The division of the concentration space of the Ag–Ga–Ge–Se system in the GeSe–Se–Ga2Se3–AgGaGe3Se8–GeSe section was carried out by the EMF method. The concentration space of the Ag–Ga–Ge–Se system contains the four-phase regions GeSe2–Se–Ga2Se3–AgGaGe3Se8 (I) and GeSe–GeSe2–Ga2Se3–AgGaGe3Se8 (II). The spatial positions of these phase regions vs the point of silver were used to express equations of the overall cell reactions of synthesis of the AgGaGe3Se8 compound:
2Ag + 6GeSe2 + Ga2Se3 + Se = 2AgGaGe3Se8 and 2Ag + 7GeSe2 + Ga2Se3 = GeSe + 2AgGaGe3Se8. Reactions were performed in the positive electrodes of the following electrochemical cells (ECCs): (−) С | Ag | SЕ | R(Ag+) | PЕ | С (+), where C is graphite, Ag is the left (negative) electrode, SE is the purely Ag+ ion conducting solid electrolyte (Ag3GeS3Br-glass), PE is the right (positive) electrode, and R(Ag+) is the region of PE that contact with SE. Shifted from the left electrode to the R(Ag+) region for thermodynamic reasons Ag+ ions acted as the small nucleation centers for reconstruction of the metastable mixtures of compounds in the thermodynamically stable mixture of phases.
Linear dependences of EMF vs temperature of ECCs were used to calculate the standard thermodynamic properties of the AgGaGe3Se8 equilibrium in the regions (I) and (II): ∆f(I)= –(575,0 ± 8,9) kJ·mol–1, ∆f(I) = –(574,7 ± 12,0) kJ·mol–1, S°(I) = (515,9 ± 14,1) J·(mol·K)–1 and ∆f(II) = –(588,4 ± 9,4) kJ·mol–1, ∆f(II) = –(590,6 ± 12,9) kJ·mol–1, S°(II) = (507,8 ± 13,2) J·(mol·K)–1, respectively. The relative difference between the calculated values ∆f(I) and ∆f(II) within ~2.3% and the overlap of the uncertainty intervals characterize the four-phase sections (I) and (II) by the combination of compounds of the formula composition. Moreover, values of the partial thermodynamic functions of the potential-determining component (Ag) of the AgGaGe3Se8 compound were calculated.

Keywords: Ag-containing compounds, thermodynamic properties, phase equilibria, existence region, EMF method.

References:

    1. Moroz M., Tesfaye F., Demchenko P. et al. Non-activation synthesis and thermodynamic properties of ternary compounds of the Ag–Te–Br system. Thermochim. Acta. 2021. Vol. 698. P. 178862(1–7). (https://doi.org/10.1016/j.tca.2021.178862).
    2. Moroz M., Tesfaye F., Demchenko P. et al. The Equilibrium Phase Formation and Thermodynamic Properties of Functional Tellurides in the Ag–Fe–Ge–Te System. Energies. 2021. Vol. 14. P. 1314(1–15). (https://doi.org/10.3390/en14051314).
    3. Olekseyuk I.D., Gorgut G.P., Parasyuk O.V. The Phase Equilibria in the Quasi-Ternary Ag2Se-Ga2Se3-GeSe2 System. J. Alloys Compd. 1997. Vol. 260. P. 111–120. (https://doi.org/10.1016/S0925-8388(97)00166-7).
    4. Olekseyuk I., Parasyuk O., Piskach L. et al. Quasi-triple chalcogenide systems. Lutsk, Vezha. 1999. Vol. 1. 164 p. (in Ukrainian).
    5. Olekseyuk I., Parasyuk O., Piskach L. et al. Chalcogenide systems. Lutsk, Volyn. National University. 2011. 220 p. (in Ukrainian).
    6. Kityk I.V., Al Zayed N., Rakus P. et al. Laser-induced piezoelectric effects in chalcogenide crystals, Phys. B. Condens. Matter. 2013. Vol. 423. P. 60–63. (https://doi.org/10.1016/j.physb.2013.04.043).
    7. Kityk I.V., Fedorchuk A.O., Rakus P. et al. Photo induced anisotropy in the AgGaGe3Se8:Cu chalcogenide crystals. Mater. Lett. 2013. Vol. 107 P. 218–220. (https://doi.org/10.1016/j.matlet.2013.06.011).
    8. Adamenko D., Parasyuk O., Vlokh R. Faraday effect in AgGaGe3Se8 crystals. Ukr. J. Phys. Opt. 2016. Vol. 17. P. 27–31. (https://doi.org/10.3116/16091833/17/1/27/2016).
    9. Moroz M.V., Demchenko P.Y., Prokhorenko S.V. Moroz V.M. Physical properties of glasses in the Ag2GeS3-AgBr system. Phys. Solid State. 2013. Vol. 55. P. 1613–1618. (https://doi.org/10.1134/S1063783413080209).
    10. Preston-Thomas H. The International Temperature Scale of 1990 (ITS-90), Metrologia. 1990. Vol. 27. P. 3–10. (https://doi.org/10.1088/0026-1394/27/1/002).
    11. Osadchii E.G., Rappo O.A. Determination of standard thermodynamic properties of sulfides in the Ag–Au–S system by means of a solid-state galvanic cell. Am. Mineral. 2004. Vol. 89. P. 1405–1410. (https://doi.org/10.2138/am-2004-1007).
    12. Barin I. Thermochemical Data of Pure Substances, Wiley. 1995. (https://doi.org/10.1002/9783527619825).

How to Cite

Moroz M., Demchenko P., Prokhorenko M., Rudyk B., Soliak L., Mysina O., Pereviznyk O., Reshetnyak O. THERMODYNAMIC PROPERTIES OF THE AgGaGe3Se8 COMPOUND AT Т≤500 K DETERMINED BY THE EMF METHOD. Proc. Shevchenko Sci. Soc. Chem. Sci. 2022 Vol. LXX. P. 53-61.

Download the pdf