Nataliia SLYVKA1, Lesya SALIYEVA1, Serhii HOLOTA1,2, Ella KADYKALO1, Larysa MARUSHKO1, Mykhailo VOVK3
1Lesya Ukrainka Volyn National University, Voli Ave., 13, 43025 Lutsk, Ukraine e-mail: saliieva.lesia@vnu.edu.ua
2Danylo Halytsky Lviv National Medical University, Pekarska Str., 69, 79010 Lviv, Ukraine
3Institute of Organic Chemistry of the NAS of Ukraine, Murmanska Str., 5, 02660 Kyiv, Ukraine
DOI: https://doi.org/10.37827/ntsh.chem.2022.70.102
SYNTHESIS AND ANTIEXUDATIVE ACTIVITY OF N-ОXIDES 4-PYRIDINYLOXYSUBSTITUTED (BENZO)IMIDAZO[2,1-b][1,3]THIAZINES
The imidazo[2,1-b][1,3]thiazine nucleus, as well as the pyridine-N-oxide fragment, are pharmacophore groups that have received much attention from researchers. That is why the combination of these scaffolds in the structure of a single molecule seems to be quite attractive from chemical and biological point of view. Synthetically available 4-pyridinyloxy-substituted (benzo)imidazo[2,1-b]thiazines were used as precursors to obtain previously unknown (benzo)imidazo[2,1-b][1,3]thiazin-6-yloxypyridine 1-oxides. It was found that the oxidation of the latter with m-chlorobenzoic acid under mild reaction conditions using dichloromethane as a solvent at room temperature proceeds smoothly and selectively to obtain only the target products. The composition and structure of the synthesized pyridine-N-oxides are unambiguously confirmed by complex physicochemical analysis, particularly by 1H and 13C NMR spectroscopy, chromato-mass spectrometry, as well as elemental analysis data. The antiexudative activity of (benz)imidazo[2,1-b][1,3]thiazin-6-yloxypyridine 1-oxides was studied in vivo in a model of carrageenan-induced paw edema in white outbred male rats. The development of edema was considered from increasing the volume of the paw 4 hours after the introduction of carrageenan. Quantitative assessment of antiexudative activity was performed by the degree of reduction of rat paw edema, and the rate of suppression of the inflammatory process was calculated. Performed bioscreening showed that the synthesized pyridine-N-oxides are characterized by weak anti-inflammatory activity, and only 2-chloro-4-[(2,3-diphenyl-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazin-6-yl)oxy]pyridine 1-oxide 2a has moderate antiexudative effect with of inflammatory inhibition rate of 31.9%. This compound is thus of interest for further structural modification in order to obtain potential non-steroidal anti-inflammatory agents. It is important to note that the presence in the structure of the synthesized derivatives 2a-e of N-oxide fragment is very promising for the design of anti-inflammatory agents, which are characterized by the absence of side effects caused by inhibition of cyclooxygenase-1.
Keywords: іmіdаzо[2,1-b]thiazines, m-chloroperoxybenzoic acid, oxidation, N-оxides, antiexudative activity.
References:
-
1. Ramos Rodríguez А.О., Magaña Vergara N.Е., Mojica Sánchez J.Р., Sumaya Martínez М.Т., Gómez Sandoval Z., Cruz
А., Ramos Organillo А. Synthesis, crystal structure, antioxidant activity and dft study of
2-aryl-2,3-dihydro-4H-[1,3]thiazino[3,2-a]benzimidazol-4-оne. Journal of Molecular Structure. 2020. Vol. 1199. Р.
127036. (https://doi.org/10.1016/j.molstruc.2019.127036).
2. Nikolova І., Slavchev І., Ravutsov М., Dangalov М., Nikolova Y., Zagranyarska І., Stoyanova А., Nikolova N.,
Mukova L., Grozdanov Р., Nikolova R., Shivachev В., Kuz'min V.E., Ognichenko L.N., Galabov A.S., Dobrikov G.M.
Anti-enteroviral activity of new MDL-860 analogues: Synthesis, in vitro/in vivo studies and QSAR analysis.
Bioorganic Chemistry. 2019. Vol. 85. P. 487–497. (https://doi.org/10.1016/j.bioorg.2019.02.020).
3. Gong, J.-Х., He, Y., Cui, Z.-L., Guo, Y.-W. Synthesis, spectral characterization, and antituberculosis activity
of thiazino[3,2-а]benzimidazole derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements. 2016. Vol.
191(7). Р. 1036–1041. (https://doi.org/10.1080/10426507.2015.1135149).
4. Thompson A.M., O’Connor P.D., Marshall A.J., Francisco A.F., Kelly J.M., Riley J., Read K.D., Perez C.J.,
Cornwall S., Thompson R.C.A., Keenan М., White K.L., Charman S.A., Zulfiqar В., Sykes M.L., Avery V.M., Chatelain
Е., Denny W.A. Re-evaluating pretomanid analogues for Chagas disease: Hit-to-lead studies reveal both in vitro and
in vivo trypanocidal efficacy. Eur. J. Med. Chem. 2020. Vol. 207. Р. 112849. (https://doi.org/10.1016/j.ejmech.2020.112849).
5. Meriç A., İncesu Z., Hatipoğlu İ. Synthesis of some 3,4-disubstituted-6,7-dihydro-imidazo [2,1-b] [1,3]thiazole
and 3,4-disubstituted-7,8-dihydro-6H-imidazo[2,1-b][1,3]thiazine derivatives and evaluation of their
cytotoxicities against F2408 and 5RP7 cells. Med. Chem. Res. 2008. Vol. 17. P. 30–41. (https://doi.org/10.1007/s00044-008-9090-7).
6. Schoeder C.T., Kaleta M., Mahardhika A.B., Olejarz-Maciej A., Łażewska D., Kieć-Kononowicz K., Müller C.E.
Structure-activity relationships of imidazothiazinones and analogs as antagonists of the cannabinoid-activated
orphan G protein-coupled receptor GPR18. Eur. J. Med. Chem. 2018. Vol. 155. P. 381–397. (https://doi.org/10.1016/j.ejmech.2018.05.050).
7. Volkov O.A., Cosner C. C., Brockway A.J., Kramer M., Booker M., Zhong S., Ketcherside A., Wei S., Longgood J.,
McCoy M., Richardson T.E., Wring S.A., Peel M., Klinger J.D., Posner B.A., De Brabander J.K., Phillips M.A.
Identification of Trypanosoma brucei AdoMetDC inhibitors using a high-throughput mass spectrometry-based assay.
ACS Infectious Diseases. 2017. Vol. 3(7). P. 512–526. (https://doi.org/10.1021/acsinfecdis.7b00022).
8. Wardman P., Priyadarsinil K.I., Dennis M.F., Everett S.A., Naylor M.A., Patel K.B., Stratford I.J., Stratford
M.R.L., Tracy M. Chemical properties which control selectivity and efficacy of aromatic N-oxide bioreductive
drugs. Bri. J. Cancer. 1996. Vol. 27. P. 70–74.
9. Chandler C.J., Segel I.H. Mechanism of the Antimicrobial Action of Pyrithione: Effects on Membrane Transport,
ATP Levels, and Protein Synthesis. Antimicrob. Agents Chemother. 1978. Vol. 14(1). P. 60–68. (https://doi.org/10.1128/AAC.14.1.60).
10. Vallerini G.P., Amori L., Beato C., Tararina M., Wang X.-D., Schwarcz R., Costantino G. 2-Aminonicotinic Acid
1-Oxides Are Chemically Stable Inhibitors of Quinolinic Acid Synthesis in the Mammalian Brain: A Step toward New
Antiexcitotoxic Agents. J. Med. Chem. 2013. Vol. 56(23). P. 9482–9495. (https://doi.org/10.1021/jm401249c).
11. O'Donnell G., Poeschl R., Zimhony O., Gunaratnam M., Moreira J.B.C., Neidle S., Evangelopoulos D., Bhakta S.,
Malkinson J.P., Boshoff H.I., Lenaerts A., Gibbons S. Bioactive Pyridine-N-oxide Disulfides from Allium
stipitatum. J. Nat. Prod. 2009. Vol. 72(3). P. 360–365. (https://doi.org/10.1021/np800572r).
12. Torres E., Moreno E., Ancizu S., Barea C., Galiano S., Aldana S., Monge A., Pérez-Silanes S. New
1,4-di-N-oxide-quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives as anti-Mycobacterium
tuberculosis agents. Bioorg. Med. Chem. Lett. 2011. Vol. 21(12). P. 3699–3703. (https://doi.org/10.1016/j.bmcl.2011.04.072).
13. Mosher H.S., Turner L. Pyridine N-oxide. Org. Synth. 1953, Vol. 33. P. 79. (https://doi.org/10.15227/orgsyn.033.0079).
14. Epsztajn, J., Bieniek, A., Kowalska, J. Application of organolithium and related reagents in synthesis. Part
9. Synthesis and metallation of 4-chloropicolin- and 2-chloroisonicotin¬anilides. A useful method for preparation
of 2,3,4-trisubstituted pyridines. Tetrahedron. 1989. Vol. 47(9). P. 1697–1706. (https://doi.org/10.1016/S0040-4020%2801%2996912-1).
15. Meisenheimer J. Über Pyridin-, Chinolin- und Isochinolin-N-oxyd. Ber. Dtsch. Chem. Ges. (A and B Series).
1926. Vol. 59(8). P. 1848–1853. (https://doi.org/10.1002/cber.19260590828).
16. Kubota A., Takeuchi H. An Unexpected Incident with m-CPBA. Org. Process Res. Dev. 2004. Vol. 8(6). P.
1076–1078. (https://doi.org/10.1021/op049825+).
17. Slyvka N., Saliyeva L., Holota S., Tkachuk V., Vaskevych A., Vaskevych R., Vovk M. Convenient Synthesis of
4-pyridinyloxy-Modified imidazo[2,1-b][1,3]thiazines as Potential Anti-inflammatory Agents. Biointerface Res.
Appl. Chem. 2023. Vol. 13(2). P. 183. (https://doi.org/10.33263/BRIAC132.183).
18. Winter C.A., Risley E.A., Nuss G.W. Carrageenin-induced edema in hind paw of the rat as an assay for
antiiflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine. 1962. Vol. 111(3). P.
544–547. (https://doi.org/10.3181/00379727-111-27849).
How to Cite
Slyvka N., Saliyeva L., Holota S. Kadykalo E., Marushko L., Vovk M. SYNTHESIS AND ANTIEXUDATIVE ACTIVITY OF N-ОXIDES 4-PYRIDINYLOXYSUBSTITUTED (BENZO)IMIDAZO[2,1-b][1,3]THIAZINES Proc. Shevchenko Sci. Soc. Chem. Sci. 2022 Vol. LXX. P. 102-109.