Olexandr IVANKIV1, Mykhailo DIURDIAI1, Lesya SALIYEVA1, Nataliia SLYVKA1, Larysa MARUSHKO1, Mykhailo VOVK2
1Lesya Ukrainka Volyn National University, 13, Voli Ave., Lutsk 43025, Ukraine e-mail: slivka.natalia@vnu.edu.ua
2Institute of Organic Chemistry of the NAS of Ukraine, 5, Akademika Kukharia Str., 02660 Kyiv, Ukraine
DOI: https://doi.org/10.37827/ntsh.chem.2024.75.066
SYNTHESIS AND ANTIOXIDANT ACTIVITY OF 5-CHLORO-2-METHYL-2,3-DIHYDROIMIDAZO[2,1-b][1,3]THIAZOLE-6-CARBALDEHYDE
Imidazothiazoles annelated to the b face have been of particular interest to researchers in recent decades due to their powerful medical and biological potential. Antioxidant therapy of diseases associated with oxidative stress is one of the important areas of modern medicine. That is why this work is devoted to the synthesis of 2-methyl-5-chloro-2,3-dihydroimidazo[2,1-b][1,3]thiazole-6-carbaldehyde and the evaluation of its antioxidant potential. Synthetically available 2-methyl-2,3-dihydroimidazo[2,1-b][1,3]thiazol-5(6H)-one was used as a substrate. The presence of an activated methylene group in its structure makes it very attractive for further structural modification by pharmacoform groups and construction of biologically active compounds. It was found that 2-methylimidazothiazole undergoes a Vilsmeier-Haack reaction during heating with a DMF/POCl3 complex to form a 6-formyl-5-chloro derivative with a yield of 25%. The composition and structure of this chloraldehyde synthesized for the first time was unambiguously confirmed by a set of physicochemical analysis, including elemental analysis, chromato-mass, IR and NMR spectra. Specifically, IR spectrum contains an intense absorption band of valence vibrations of the С=О group at 1684 cm–1. The 1H NMR spectrum is characterized by a formyl group singlet at 9.72 ppm, and the signal of the corresponding carbon atom in the 13C NMR spectrum is recorded at 182.2 ppm. The fact of aromatization of the imidazole ring is confirmed by the shift of the signals of C5 and C6 atoms to the region of 139.4 ppm and 123.2 ppm, respectively. The antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition method. Initially, it was experimentally confirmed that the rate of inhibition of radicals by the synthesized compound at a concentration of 5 mM is 54.1%. The next stage of the study showed that the IC50 data is 1.669 mM, vs IC50 = 0.097 mM for ascorbic acid. Therefore, 2-methyl-5-chloro-2,3-dihydroimidazo[2,1-b][1,3]thiazole-6-carbaldehyde is of interest for advanced pharmacological studies and design of promising synthetic antioxidants.
Keywords: 2-methyl-2,3-dihydroimidazo[2,1-b][1,3]thiazol-5(6H)-one, Wilsmeier-Haack reaction, 5-chloro-2-methyl-2,3-dihydroimidazo[2,1-b][1,3]thiazole-6-carbaldehyde, DPPH assay, antioxidant activity.
References:
-
1. Murphy M. P., Holmgren A., Larsson N. G., Halliwell B., Chang C. J., Kalyanaraman B., Rhee S. G., Thornalley P.
J., Partridge L., Gems D., Nyström T., Belousov V., Schumacker P. T., Winterbourn C. C. Unraveling the biological
roles of reactive oxygen species. Cell Metab. 2011. Vol. 13(4). P. 361–366.
(https://doi.org/10.1016/j.cmet.2011.03.010).
2. Đukić M., Ninković M., Jovanović M. Oxidative stress: Clinical diagnostic significance. J. Med. Biochem. 2008.
Vol. 27(4). P. 409–425. (https://doi.org/10.2478/v10011-008-0024-1).
3. Semchyshyn H. M. Reactive carbonyl species in vivo: generation and dual biological effects. Sci. World J. 2014.
Vol. 2014. P. 417842. (https://doi.org/10.1155/2014/417842).
4. Kagan V. E., Fabisiak J. P., Shvedova A. A., Tyurina Y. Y., Tyurin V. A., Schor N. F., Kawai K. Oxidative
signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Letters. 2000.
Vol. 477. P. 1–7. (https://doi.org/10.1016/S0014-5793(00)01707-5).
5. Djukic M. M., Jovanovic M. D., Ninkovic M., Stevanovic I., Ilic K., Curcic M., Vekic J. Protective role of
glutathione reductase in paraquat induced neurotoxicity. Chem. Biol. Interact. 2012. Vol. 199. P. 74–86.
(https://doi.org/10.1016/j.cbi.2012.05.008).
6. Pokorný J. Are natural antioxidants better – and safer – than synthetic antioxidants? Eur. J. Lipid Sci.
Technol. 2007. Vol. 109(8). P. 883–883. (https://doi.org/10.1002/ejlt.200700064).
7. Stoia M., Oancea S. Low-molecular-weight synthetic antioxidants: classification, pharmacological profile,
effectiveness and trends. Antioxidants. 2022. Vol. 11(4). P. 638. (https://doi.org/10.3390/antiox11040638).
8. Amarouch H., Loiseau P. R., Bacha C., Caujolle R., Payard M., Loiseau P. M., Bories C., Gayral P.
Imidazo[2,1-b]thiazoles: analogues of levamisole. Eur. J. Med. Chem. 1987. Vol. 22(5). P. 463–466.
(https://doi.org/10.1016/0223-5234(87)90037-7).
9. Liu K. G., Robichaud A. J., Bernotas R. C., Yan Y., Lo J. R., Zhang M.-Y., Hughes Z. A., Huselton C., Zhang G.
M., Zhang J. Y., Kowal D. M., Smith D. L., Schechter L. E., Comery T. A. 5-Piperazinyl-3-sulfonylindazoles as
potent and selective 5-hydroxy¬tryptamine-6 antagonists. J. Med. Chem. 2010. Vol. 53(21). P. 7639–7646.
(https://doi.org/10.1021/jm1007825).
10. Bemis J., Disch J. S., Jirousek M., Lunsmann W. J., Ng P. Y., Vu C. B. Sirtuin modulating imidazothiazole
compounds. Patent of US. WO 2008156866. Publ. 24.12.2008.
11. Bekaddour Benatia N., Rodero M., Herbeu-Val J.-P., Pietrancosta N., Smith N. Imidazoline derivatives as CXCR4
modulators. Patent of France. WO 2020201096. Publ. 08.10.2020.
12. Shareef M. A., Sirisha K., Sayeed I. B., Khan I., Ganapathi T., Akbar S., Kumar C. G., Kamal A., Nagendra Babu
B. Synthesis of new triazole fused imidazo[2,1-b]thiazole hybrids with emphasis on Staphylococcus aureus virulence
factors. Bioorg. Med. Chem. Lett. 2019. Vol. 29(19). P. 126621. (https://doi.org/10.1016/j.bmcl.2019.08.025).
13. Leoni A., Frosini M., Locatelli A., Micucci M., Carotenuto C., Durante M., Cosconati S., Budriesi R.
4-Imidazo[2,1-b]thiazole-1,4-DHPs and neuroprotection: preliminary study in hits searching. Eur. J. Med. Chem.
2019. Vol. 169. P. 89–102. (https://doi.org/10.1016/j.ejmech.2019.02.075).
14. Baig M. F., Nayak V. L., Budaganaboyina P., Mullagiri K., Sunkari S., Gour J., Kamal A. Synthesis and
biological evaluation of imidazo[2,1-b]thiazole-benzimidazole conjugates as microtubule-targeting agents. Bioorg.
Chem. 2018. Vol. 77. P. 515–526. (https://doi.org/10.1016/j.bioorg.2018.02.005).
15. Nagireddy P. K. R., Kommalapati V. K., Krishna V. S., Sriram D., Tangutur A. D., Kantevari S.
Imidazo[2,1-b]thiazole-coupled natural noscapine derivatives was anticancer agents. ACS Omega. 2019. Vol. 21(4).
P. 19382–19398. (https://doi.org/10.1021/acsomega.9b02789).
16. Noha R. M., Abdelhameid M. K., Ismail M. M., Manal R. M., Salwa E. Design, synthesis and screening of
benzimidazole containing compounds with methoxylated aryl radicals as cytotoxic molecules on (HCT-116) colon
cancer cells. Eur. J. Med. Chem. 2020. Vol. 209. P. 112870. (https://doi.org/10.1016/j.ejmech.2020.112870).
17. Zhang Q., Zhao K., Zhang L., Jiao X., Zhang Y., Tang C. Synthesis and biological evaluation of diaryl urea
derivatives as FLT3 inhibitors. Bioorg. Med. Chem. Lett. 2020. Vol. 30(23). P. 127525.
(https://doi.org/10.1016/j.bmcl.2020.127525).
18. Dianat S., Moghimi S., Mahdavi M., Nadri H., Moradi A., Firoozpour L., Emami S., Mouradzadegun A., Shafiee A.,
Foroumadi A. Quinoline-based imidazole-fused heterocycles as new inhibitors of 15-lipoxygenase. J. Enzyme Inhib.
Med. Chem. 2016. Vol. 31(3). P. 205–209. (https://doi.org/10.1080/14756366.2016.1206087).
19. Serafini M., Torre E., Aprile S., Massarotti A., Fallarini S., Pirali T. Synthesis, docking and biological
evaluation of a novel class of imidazothiazoles as IDO1 inhibitors. Molecules. 2019. Vol. 24(10). P. 1874.
(https://doi.org/10.3390/molecules24101874).
20. Kasote D. M., Katyare S. S., Hegde M. V., Bae H. Significance of antioxidant potential of plants and its
relevance to therapeutic applications. Int. J. Biol. Sci. 2015. Vol. 11(8). P. 982–991.
(https://doi.org/10.7150%2Fijbs.12096).
21. Djukic M., Fesatidou M., Xenikakis I., Geronikaki A., Angelova V. T., Savic V., Pasic M., Krilovic B., Djukic
D., Gobeljic B., Pavlica M., Djuric A., Stanojevic I., Vojvodic D., Saso L. In vitro antioxidant activity of
thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole. Chem. Biol. Interact. 2018. Vol. 286. P.
119–131. (https://doi.org/10.1016/j.cbi.2018.03.013).
22. Brand-Williams W., Cuvelier M. E., Berset C. Use of a free radical method to evaluate antioxidant activity.
LWT – Food Science and Technology. 1995. Vol. 28(1). P. 25–30. (https://doi.org/10.1016/S0023-6438(95)80008-5).
How to Cite
IVANKIV O., DIURDIAI M., SALIYEVA L., SLYVKA N., MARUSHKO L., VOVK M. REACTION OF [3+2]-CYCLOADDITION IN THE SYNTHESIS OF NEW (BENZ)IMIDAZO[2,1-b][1,3]THIAZINYL-1,6a-DIHYDROPYRROLO[3,4-d][1,2,3]TRIAZOLE-4,6(3aH,5H)-DIONES. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. LXXV. P. 66-72.