PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXXV 2024

Arsenii SNIZHKO, Liudmyla CHEPELEVA, Eugene GLADKOV, Alexander ROSHAL, Alexander KYRYCHENKO

Research Institute of Chemistry, V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
e-mail: eugenegladkov@karazin.ua

DOI: https://doi.org/10.37827/ntsh.chem.2024.75.059

STUDY OF THE INTERACTION OF FLUORESCENT 4'-DODECYLCARBOXY-3-HYDROXYFLAVONE PROBE WITH POLYVINYLPYRROLIDONE

The study examined the interaction of a new ESIPT fluorescent probe, which is based on 4`-dodecyl¬carboxy-substituted 3-hydroxyflavone, with polyvinylpyrrolidone (PVP) at varying polymer concentrations. Through fluorimetric titration, it was determined that the probe's affinity to the polymer relies on the concentration and morphology of PVP in the solution. At low polymer concentrations, a slight increase in fluorescence intensity and a slight hypsochromic shift were observed, indicating a weak probe-polymer interaction. A significant amplification of the probe signal was noticed in high concentration PVP solutions, suggesting the probe's penetration into the hydrophobic environment of the polymer matrix. It was observed that at high concentrations, PVP forms a dense spatial structure, increasing the probe's affinity to the polymer.
Molecular docking calculations were utilized to investigate the molecular aspects of the probe-polymer interaction. The binding interactions of the probe ФЛ-С11СООН with PVP macromolecules of different sizes and spatial structures were studied. It was found that the spatial structure of the polymer plays a crucial role in the probe binding. The molecular docking calculations indicated that the probe exhibited weak binding (-4.5 kcal/mol) to an unfolded conformation of PVP100. Conversely, certain hydrophobic sites in a compact, globular matrix of PVP1440 were able to accommodate the probe ФЛ-С111СООН with a high binding affinity of -7.3 kcal/mol. The long-alkyl chain of the probe anchor within at PVP matrix.
In summary, it was demonstrated that long-chain fatty acid-functionalized 3-hydroxyflavone derivatives have great potential as environment-sensitive fluorescent probes for studying the microscopic structure and morphology of synthetic polymers, macromolecules, and organized solutions.

Keywords: heterocyclic compounds, organic synthesis, 3-hydroxyflavone, fluorescence probe, molecular docking.

References:

    1. Pourmadadi M., Shamsabadipour A., Aslani A., Eshaghi M. M., Rahdar A., Pandey S. Development of polyvinylpyrrolidone-based nanomaterials for biosensors applications: A review. Inorg. Chem. Commun. 2023. Vol. 152. P. 110714. (https://doi.org/10.1016/j.inoche.2023.110714).
    2. Franco P., De Marco I. The use of poly(n-vinyl pyrrolidone) in the delivery of drugs: A review. Polymers. 2020. Vol. 12 (5). 1114. (https://doi.org/10.3390/polym12051114).
    3. Kurakula M., Rao G. S. N. K. Pharmaceutical assessment of polyvinylpyrrolidone (pvp): As excipient from conventional to controlled delivery systems with a spotlight on covid-19 inhibition. J. Drug Delivery Sci. Technol. 2020. Vol. 60. P. 102046. (https://doi.org/10.1016/j.jddst.2020.102046).
    4. Rusdin A., Mohd Gazzali A., Ain Thomas N., Megantara S., Aulifa D. L., Budiman A., Muchtaridi M. Advancing drug delivery paradigms: Polyvinyl pyrolidone (pvp)-based amorphous solid dispersion for enhanced physicochemical properties and therapeutic efficacy. Polymers. 2024. Vol. 16(2). P. 286. (https://doi.org/10.3390/polym16020286).
    5. Hädener M., Gjuroski I., Furrer J., Vermathen M. Interactions of polyvinylpyrrolidone with chlorin e6-based photosensitizers studied by nmr and electronic absorption spectroscopy. J. Phys. Chem. B. 2015. Vol. 119 (36). P. 12117–12128. (https://doi.org/10.1021/acs.jpcb.5b05761).
    6. Gjuroski I., Girousi E., Meyer C., Hertig D., Stojkov D., Fux M., Schnidrig N., Bucher J., Pfister S., Sauser L., Simon H.-U., Vermathen P., Furrer J., Vermathen M. Evaluation of polyvinylpyrrolidone and block copolymer micelle encapsulation of serine chlorin e6 and chlorin e4 on their reactivity towards albumin and transferrin and their cell uptake. J. Controlled Release. 2019. Vol. 316. P. 150–167. (https://doi.org/10.1016/j.jconrel.2019.10.010).
    7. Colombo M., Michels L. R., Teixeira H. F., Koester L. S. Flavonoid delivery by solid dispersion: A systematic review. Phytochem. Rev. 2022. Vol. 21(3). P. 783–808. (https://doi.org/10.1007/s11101-021-09763-3).
    8. Stejskal J. Recent advances in the removal of organic dyes from aqueous media with conducting polymers, polyaniline and polypyrrole, and their composites. Polymers. 2022. Vol. 14(19). P. 4243. (https://doi.org/10.3390/polym14194243).
    9. Pivovarenko V. G., Klymchenko A. S. Fluorescent probes based on charge and proton transfer for probing biomolecular environment. Chem. Rec. 2024. P. e202300321. (https://doi.org/10.1002/tcr.202300321).
    10. Dyubko T. S., Pivovarenko V. G., Chekanova V. V., Hvozdiuk Y. V., Pakhomova Y. S., Kompaniets A. M., Tatarets A. L. Study of polyvinyl alcohols (9 and 31 kDa) aggregation in aqueous solutions by fluorescent probing. Biophysical Bulletin. 2020. Vol. 44. P. 7–17. (https://doi.org/10.26565/2075-3810-2020-44-01).
    11. Chepeleva L. V., Demidov O. O., Snizhko A. D., Tarasenko D. O., Chumak A. Y., Kolomoitsev O. O., Kotliar V. M., Gladkov E. S., Kyrychenko A., Roshal A. D. Binding interactions of hydrophobically-modified flavonols with β-glucosidase: Fluorescence spectroscopy and molecular modelling study. RSC Adv. 2023. Vol. 13(48). P. 34107–34121. (https://doi.org/10.1039/D3RA06276G).
    12. Demidov O. O., Gladkov E. S., Kyrychenko A. V., Roshal A. D. Synthetic and natural flavonols as promising fluorescence probes for β-glucosidase activity screening. Funct. Mater. 2022. Vol. 29(2). P. 252–262. (https://doi.org/10.15407/fm29.02.252).
    13. Serdiuk I. E., Reszka M., Myszka H., Krzymiński K., Liberek B., Roshal A. D. Flavonol-based fluorescent indicator for determination of β-glucosidase activity. RSC Adv. 2016. Vol. 6(48). P. 42532–42536. (https://doi.org/10.1039/C6RA06062E).
    14. Senkal B. F., Erkal D., Yavuz E. Removal of dyes from water by poly(vinyl pyrrolidone) hydrogel. Polym. Adv. Technol. 2006. Vol. 17(11–12). P. 924–927. (https://doi.org/10.1002/pat.836).
    15. Chepeleva L. V., Tarasenko D. O., Chumak A. Y., Demidov O. O., Snizhko A. D., Kolomoitsev O. O., Kotliar V. M., Gladkov E. S., Tatarets A. L., Kyrychenko A. V., Roshal A. D. 4’-benzyloxyflavonol glucoside as fluorescent indicator for β-glucosidase activity. Funct. Mater. 2023. Vol. 30(4). P. 494–505. (https://doi.org/10.15407/fm30.04.494).
    16. Paul S., Selvam S., Heng P. W. S., Chan L. W. Elucidation of monomerization effect of pvp on chlorin e6 aggregates by spectroscopic, chemometric, thermodynamic and molecular simulation studies. J. Fluoresc. 2013. Vol. 23(5). P. 1065–1076. (https://doi.org/10.1007/s10895-013-1236-4).
    17. Fossum C. J., Johnson B. O. V., Golde S. T., Kielman A. J., Finke B., Smith M. A., Lowater H. R., Laatsch B. F., Bhattacharyya S., Hati S. Insights into the mechanism of tryptophan fluorescence quenching due to synthetic crowding agents: A combined experimental and computational study. ACS Omega. 2023. Vol. 8(47). P. 44820–44830. (https://doi.org/10.1021/acsomega.3c06006).
    18. Goodsell D. S., Morris G. M., Olson A. J. Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Recognit. 1996. Vol. 9(1). P. 1–5. (https://doi.org/10.1002/(sici)1099-1352(199601)9:1%3C1::aid-jmr241%3E3.0.co;2-6).
    19. Trott O., Olson A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010. Vol. 31(2). P. 455–461. (https://doi.org/10.1002%2Fjcc.21334).
    20. Kyrychenko A., Korsun O. M., Gubin I. I., Kovalenko S. M., Kalugin O. N. Atomistic simulations of coating of silver nanoparticles with poly(vinylpyrrolidone) oligomers: Effect of oligomer chain length. J. Phys. Chem. C. 2015. Vol. 119(14). P. 7888–7899. (https://doi.org/10.1021/jp510369a).

    How to Cite

    SNIZHKO A., CHEPELEVA L., GLADKOV E., ROSHAL A., KYRYCHENKO A. STUDY OF THE INTERACTION OF FLUORESCENT 4'-DODECYLCARBOXY-3-HYDROXYFLAVONE PROBE WITH POLYVINYLPYRROLIDONE. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. LXXV. P. 59-65.

    Download the pdf