Volodymyr BABIZHETSKYY1, Oksana MYAKUSH2, Anatoliy ZELINSKIY1
1Ivan Franko National University of Lviv, Kyryla і Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: volodymyr.babizhetskyy@lnu.edu.ua
2National University of Forest and Wood Technology of Ukraine, Chuprynky Str., 103, 79057 Lviv, Ukraine
DOI: https://doi.org/10.37827/ntsh.chem.2024.75.040
CRYSTAL STRUCTURE OF THE COMPOUND Y1-xYbxFe2Si2 x=0.24: SINGLE CRYSTAL INVESTIGATION
Chuprynky Str., 103, 79057 Lviv, Ukraine For the first time, the complete single-crystal structure study of the compound Y1-xYbxFe2Si2 x=0.24 was performed. It belongs to the CeGa2Al2 structure type, Pearson’s symbol tI10,139, space group I4/mmm, lattice parameters a = 3.911(1), c = 9.929(4) Å, Z = 2. The compound was prepared by arc-melting of the initial elements with а purity of not less than 99.9 % under argon followed by annealing in silica tubes at 870 K for 1400 h. Single crystals for structural examination were selected under a microscope from the broken alloys obtained. X-ray diffraction data of one of the irregularly faceted single crystals was obtained at a temperature of 300(2) K using a single crystal X-ray diffractometer Bruker D8 Venture with monochromatized MoKα-radiation. The structure is refined using the program SHELXL, version 2018/3 (full-matrix least-squares refinement with anisotropic atomic parameters), R1 = 0.015, wR2 = 0.036 for 107 unique reflections with Io > 2σ(Io) and 10 refined parameters. Coordinates of atoms are the following: 2R at 2а 0 0 0; 4Fe at 4d 0 1/2 1/4; 4Si at 4e 0 0 z, z=0.3760(1), R = 0.767(5)Y + 0.233(5)Yb. The coordination numbers of R, Fe, and Si atoms are 20, 12, and 10, respectively. The interatomic distances, except Fe–Si, are longer than the sum of the metallic radii of the corresponding atoms. Fe–Si distances (2.322(1) Å) are smaller than the sum of the radii of these atoms (2.43 Å) and indicate a significant interaction between Fe and Si in the structure. Currently known RFe2Si2 (R=Y, Yb) are members of complete series of compounds RFe2Si2 (R=rare earths) isotypic with CeGa2Al2. A partial substitution Y by Yb does not change the crystal structure as well a cell volume of Y1-xYbxFe2Si2 x=0.24.
Keywords: ternary silicides, rare earth elements, single crystal, crystal structure.
References:
-
1. Rieger W., Parthé E. Ternäre Erdalkali- und Seltene Erdmetall-Silicide und -Germanide mit ThCr2Si2-Struktur.
Monatsh. Chem. 1969. Vol. 100. P. 444–454. (https://doi.org/10.1007/BF00904086).
2. Zarechnyuk O.S., Kripyakevich P.I., Gladyshevsky E.I. Ternary intermetallic compounds with the superstructure
to the BaAl4 type. Kristallografiya. 1964. Vol. 9. P. 835–838 (in Russian).
3. Ban Z., Sikirica M. The crystal structure of ternary silicides ThM2Si2 (M = Cr, Mn, Fe, Co, Ni and Cu). Acta
Crystallogr. 1965. Vol. 18. P. 594–599. (https://doi.org/10.1107/S0365110X6500141X).
4. Andress K.R., Alberti E. X-ray investigation of Aluminum–Barium alloys. Z. Metallkd.1935. Vol. 27. P. 126–128. (https://doi.org/10.1515/ijmr-1935-271-1243).
5. Rossi D., Marazza R., Ferro R. Lattice parameters of some ThCu2Si2-type phases in ternary alloys of rare earths
with cobalt (or iron) and silicon (or germanium). J. Less-Common Met. 1978. Vol. 58. P. 203–207.
(https://doi.org/10.1016/0022-5088(78)90201-1).
6. Bodak O.I., Gladyshevskii E.I., Yarovets V.I., Davydov V.M., Il'chuk T.V. The systems (Y, Gd)–Fe–Si. Izv. AN
USSR. Inorg. Mater. 1978. Vol. 14. P. 366–369 (in Russian).
7. Umarji A.M., Noakes D.R., Viccaro P.J., Shenoy G.K., Aldred A.T., Niarchos D. Magnetic properties of REFe2Si2
compounds. J. Magn. Magn. Mat. 1983. Vol. 36. P. 61–65. (https://doi.org/10.1016/0304-8853(83)91044-2).
8. Noakes D.R., Umarji A.M., Shenoy G.K. Mössbauer studies of REFe2Si2 (RE = Gd–Lu) compounds. J. Magn. Magn.
Mater. 1983. Vol. 39. P. 309–316. (https://doi.org/10.1016/0304-8853(83)90091-4).
9. Pearson W. B., Villars P. Analysis of the unit cell dimensions of phases with the BaAl4 (ThCr2Si2) structure I:
Rare earth phases of manganese, iron, cobalt, nickel or copper with silicon or germanium. J. Less Comm. Met. 1984.
Vol. 97. P. 119–132 (https://doi.org/10.1016/0022-5088(84)90015-8).
10. Bara J.J., Hrynkiewicz H.U., Miłoś A., Szytuła A. Investigation of the crystal properties of RFe2Si2 and
RFe2Ge2 by X-ray diffraction and Mössbauer spectroscopy. J. Less-Common Met. 1990. Vol. 161. P. 185–192.
(https://doi.org/10.1016/0022-5088(90)90026-G).
11. Goto R., Noguchi S., Ishida T. Superconductivity in ternary iron silicide YFe2–δSi2 single crystal. Physica C.
2010. Vol. 470. P. S404–S405. (https://doi.org/10.1016/j.physc.2010.01.025).
12. Babizhetskyy V., Kotur B. Non-stoichiometry of GdFe2Si2: a single crystal study. Proc. Shevchenko Sci. Soc.
2021. Vol. LXVI. P. 107–116. (https://doi.org/10.37827/ntsh.chem.2021.66.107).
13. Pikul A. P., Samsel-Czeka M., Chajewski G., Romanova T., Hackemer A., Gorzelniak R., Wisniewski P.,
Kaczorowski D. Search for unconventional superconductors among the YTE2Si2 compounds (TE = Cr, Co, Ni, Rh, Pd,
Pt). J. Phys.: Condens. Matter. 2017. Vol. 29. 195602 (11 pp). (https://doi.org/10.1088/1361-648X/aa6832).
14. Felner I., Bing Lv., Chu C. W. Magnetic and structural relationship of RFe2Si2 and
R(Fe1-xMx)2Si2 (x=0–1) system (R=La, Y and Lu, M=Ni, Mn and Cu). J. Phys.: Condens. Matter. 2014. Vol. 26. 476002
(11 pp). (https://doi.org/10.1088/0953-8984/26/47/476002).
15. Ijjaali I. Venturini G. Malaman B. Evidence of a magnetic moment on the transition metal sublattice in
RFe2-xCrxSi2 compounds (R = Y, La, Nd, Tb; 0.25 ≤ x ≤ 1.75) J. Alloys Compd. 1998. Vol. 279. P. 102–109. (https://doi.org/10.1016/S0925-8388(98)00659-8).
16. Felner I., Mayer I., Grill A., Schieber M. Magnetic ordering in rare earth iron silicides and germanides of
the RFe2X2 type. Solid State Commun. 1975. Vol. 16. P. 1005–1009. (https://doi.org/10.1016/0038-1098(75)90640-7).
17. Braun H. F. Superconductivity in ternary rare earth-transition metal silicides: A critical review. J. Less
Common Met. 1984. Vol. 100. P. 105–124. (https://doi.org/10.1016/0022-5088(84)90057-2).
18. Felner I., Bing Lv., Zhao K., Chu C. W. High-pressure resistivity of YFe2Si2 and magnetic studies of
Y1-yHoyFe2Si2 and YFe2(Si1−xGex)2 systems. J. Supercond. Nov. Magn. 2015. Vol. 28. P. 1207–1216.
(https://doi.org/10.1007/S10948-015-3011-Z).
19. Akselrud L., Grin Y. WinCSD: software package for crystallographic calculations (Version 4). J. Appl.
Crystallogr. 2014. Vol. 47. P. 803–805. (https://doi.org/10.1107/S1600576714001058).
20. Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori
G., Spagna R. SIR97: a new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 1999.
Vol. 32. P. 115–119. (https://doi.org/10.1107/S0021889898007717).
21. Sheldrick G.M. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr. A. 2015.
Vol. 71. P. 3–8. (https://doi.org/10.1107/S2053273314026370).
22. Farrugia L. J. WinGX suite for small-molecule single-crystal crystallography (WinGX, Version 1.64.05), J.
Appl. Crystallogr. 1999. Vol. 32. 837–838. (https://doi.org/10.1107/S0021889899006020).
23. Mayer I., Felner I. Europium silicides and germanides of the EuM2X2 type. Crystal structure and the valence
states of europium. J. Phys. Chem. Solids. 1977. Vol. 38. P. 1031–1034. (https://doi.org/10.1016/0022-3697(77)90206-2).
24. Bardin О.І., Dashkevych M., Belan B.D., Manyako М.B., Koval L.B., Gladyshevskii R.E. Interaction of components
in the Tm–Fe–Si system at 800 °C. Ukr. Chem. J. 2011. Vol. 77(7). P. 7–15.
25. Holleman A.F. in: E. Wiberg, N. Wiberg (Eds.), Lehrbuch der anorganischen Chemie, De Gruyter, Berlin-New York,
1995. P. 1838–1840.
How to Cite
BABIZHETSKYY V., Oksana MYAKUSH O., ZELINSKIY A. CRYSTAL STRUCTURE OF THE COMPOUND Y1-xYbxFe2Si2x=0.24: SINGLE CRYSTAL INVESTIGATION. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. LXXV. P. 40-48.