УДК 546.28.64.72.668:548.3

https://doi.org/10.37827/ntsh.chem.2024.75.040

Володимир БАБІЖЕЦЬКИЙ¹, Оксана МЯКУШ², Анатолій ЗЕЛІНСЬКИЙ¹

КРИСТАЛІЧНА СТРУКТУРА СПОЛУКИ Y_{1-x}Yb_xFe₂Si₂ x = 0,24: МОНОКРИСТАЛЬНЕ ДОСЛІДЖЕННЯ

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: volodymyr.babizhetskyy@lnu.edu.ua

²Національний лісотехнічний університет України, вул. Чупринки 105, 7900 Львів, Україна

Силіцид Y_{0.76}Yb_{0.24}Fe₂Si₂ синтезовано електродуговою плавкою чистих компонентів в атмосфері очищеного аргону з наступним відпалюванням за 870 К протягом 1400 годин. Кристалічну структуру сполуки вивчено X-променевими методами монокристала, порошку та енергодисперсійною ретнгенівською спектроскопією. Y_{0.76}Yb_{0.24}Fe₂Si₂ кристалізується у структурному типі CeGa₂Al₂, просторова група 14/mmm, a = 3,911(1), c = 9,929(4) Å, $Z = 2, R_1 = 0,015, wR_2 = 0,036$ для 107 рефлексів з $I_o > 2\sigma(I_o)$ та 10 уточнюваних параметрів. Його склад підтверджено результатами енергодисперсійної Х-променевої спектроскопії. Координаційні числа атомів Si у структурі сполуки – тетрагональна антипризма з додатковими атомами Si напроти чотирикутної грані, утвореної чотирма атомами R, та з додатковим атомами Fe [SiR₄Fe₄SiR]. У структурі сполуки скорочені віддалі Fe–Si (на ~ 4%), а інші віддалі – рівні або більші за суму атомних радіусів відповідних атомів.

Ключові слова: силіциди рідкісноземельних металів, монокристал, кристалічна структура.

Вступ

Сполуки RFe_2Si_2 (R = piqkichoземельний метал) кристалізуються в об'ємноцентрованій тетрагональній кристалічній структурі (просторова група I4/mmn) [1]. Ця структура належить до структурного типу CeGa₂Al₂, який у 1964 році відкрили учені з Львівського університету [2]. Незалежно від них, ідентичний структурний тип (CT) також опублікували дослідники Загребського університету на прикладі силіциду ThCr₂Si₂ [3]. Тому в науковій літературі цей CT позначають CeGa₂Al₂ або ThCr₂Si₂ (зазвичай у закордонних виданнях). Структура тернарної сполуки CeGa₂Al₂ є надструктурою до бінарного структурного типу BaAl₄, просторова група I4/mmm [4]. Вона утворюється за упорядкованого заміщення у структурі BaAl₄ правильних систем точок 4*d* і 4*e* атомів Al, відповідно атомами Ga і Al. Атоми Ce займають положення Ba в позиції 2*a*.

Кристалічну структуру сполук RFe_2Si_2 (R = рідкісноземельний метал) досліджували автори [5–12]. Всі сполуки RFe_2Si_2 мають постійний склад 1:2:2, лише Gd i Y

є рідкісноземельними елементами, для яких силіциди, що містять Fe, мають дещо нестехіометричну структуру [11, 12]. Аналіз літературних даних підтверджує те, що для сполук RFe_2Si_2 (R = Y, Yb) відомі, у більшості досліджень, лише параметри елементарних комірок. Ці дані подано у табл. 1. Розбіжності між параметрами елементарних комірок свідчать про те, що сполуки RFe_2Si_2 (R = Y, Yb) можуть мати незначні області гомогенності, які також залежать від температури відпалювання.

Таблиця 1

Літературні дані параметрів кристалічної ґратки за результатами Х-променевої дифракції порошку для *R*Fe₂Si₂ (*R*=Y, Yb)

Table 1

<i>a</i> , Å	<i>c,</i> Å	$V, Å^3$	Література			
YFe ₂ Si ₂						
3,920	9,931	152,61	1273 К, 2 тижні	[13]		
3,923	9,951	153,15	Дугова плавка	[14]		
3,920	9,936	152,61	152,61 Нижче Тпл, 1 год			
3,920	9,920	152,43 773 К, 1 тиждень		[5]		
3,910	9,890	151,20 1073 К, 720 год		[6]		
YbFe2Si2						
3,805	9,842	142,49	1073 К, 1 тиждень [10]			
3,890	9,910	149,96	9,96 1173 К, 8 днів [8]			
3,878	9,881	148,60	773 К, 1 тиждень [5]			

Literature data for lattice parameters for RFe₂Si₂ (R=Y, Yb) (polycrystal powder XRD data)

Потрійні сполуки RFe_2Si_2 (R = рідкісноземельний метал) викликають тривалий інтерес дослідників завдяки своїм унікальним фізичним властивостям: магнітні перетворення [5, 16], мессбаурівський ефект [8], надпровідність [11, 17]. Дослідження фізичних властивостей RFe_2Si_2 , а особливо надпровідності спричинено відкриттям надпровідності за відносно високих температур у допованих арсенідах MFe_2As_2 (M = Ba, Sr), що кристалізуються у тому самому структурному типі, що й RFe_2Si_2 . У дослідженні тернарних силіцидів, для монокристала складу YFe_{1,8}Si₂, вирощеного методом Чохральського, виявлено перехід у надпровідний стан нижче 3K [11]. Щоб поліпшити властивості силіцидів RFe_2Si_2 , автори [14, 18] проводили легування сплавів четвертим компонентом і дослідили структуру, магнітні та електричні властивості сплавів $R(Fe_{1-x}M_x)_2Si_2$ (R=La, Y i Lu) [14], Y_{1-y}Ho_yFe₂Si₂ та YFe₂(Si_{1-x}Ge_x)₂ [18].

У цій праці ми провели легування силіциду YFe₂Si₂ рідкісноземельним металом із змінною валентністю – Ітербієм і дослідили кристалічну структуру сполуки Y_{0,76}Yb_{0,24}Fe₂Si₂ методом монокристала.

Матеріали та методика експерименту

Зразки готували сплавлянням шихти з вихідних компонентів високої чистоти (≥ 99,9 мас.% основного компонента) в електродуговій печі на мідному охолоджуваному водою поді з вольфрамовим електродом в атмосфері очищеного аргону. Втрати під час сплавляння не перевищували 2 % від маси вихідної шихти. Для гомогенізації сплавів їх відпалювали у вакуумованих кварцових ампулах за темпе-

ратури 870 К протягом 1400 годин з подальшим гартуванням ампул у холодній воді.

Х-променевий фазовий аналіз порошків сплавів виконували за дифрактограмами одержаними за допомогою порошкового дифрактометра ДРОН-2,0М (Fe K_{α} -випромінювання). Параметри кристалічної гратки сполук уточнювали методом порошку з використанням пакета програм WinCSD [19].

Для підтвердження атомного співвідношення елементів у кожній фазі використовували метод енергодисперсійної Х-променевої спектроскопії (ЕДРС) у поєднанні з растровим електронним мікроскопом Tescan Vega 3 LMU, обладнаним детектором Oxford Si-detector X-Max^N20. Точність вимірювань ЕДРС аналізу становить 1 ат. % визначуваного елемента.

Кристал неправильної форми відібрали з подрібненого зразка складу Y_{8,5}Yb_{6,5}Fe_{56,5}Si_{28,5}. Масив експериментальних даних отримано на автоматичному монокристальному дифрактометрі Bruker D8 Venture. Кристалохімічні характеристики сполуки та деталі знімання подано в табл. 2.

Таблиця 2

Кристалохімічні характеристики, деталі знімання й уточнення кристалічної структури сполуки Y_{0.76}Yb_{0.24}Fe₂Si₂

Table 2

ФормулаY0,76Yb0,24Fe2Si2СингоніятетрагональнаПросторова група $I4/mmm$ (№ 139)Символ Пірсона, Z $I/10, 2$ Параметри комірки $a, Å$ $a, Å$ 3,911(1) $c, Å$ 9,929(4)Об'єм елементарної комірки, ų151,9(1)Розрахована густина, g/cm³6,534Коефіцієнт адсорбції, 1/MM34,628Розмір кристала, мм³0,09×0,03×0,06Випромінювання і довжина хвилі, ÅМо $Ka, 0,71073$ ДифрактометрВгикет D8 VentureКількість уточнюваних параметрів10Уточнення F^2 $2\theta_{max}$ та (sіn θ/λ)max $66,71, 0,774$ h, k, l -5< h <6Загальна кількість відбить558Кількість відбить з $I_{0} \ge \sigma(I_0)$ 107 ($R_{\sigma} = 0,009$)Фактор розбіжності R1 (R1 всі відбиття) ⁸⁾ 0,015 (0,016) ^{a)} wR_2 (wR_2 всі відбиття) ⁵⁰ 0,036 (0,042) ⁶⁾ $S по F^2$:1,36Коефіцієнт екстинкції:0,017(2) $\Delta \rho_{max}$ та $\Delta \rho_{min}, e Å^{-3}$ 0,68/-0,64	Single crystal and structure relinement data to	or ¥ 0,76 ¥ D0,24 F e2S12
СингоніятетрагональнаПросторова група $I4/mmm$ (№ 139)Символ Пірсона, Z $I/10, 2$ Параметри комірки $a, Å$ $a, Å$ $3,911(1)$ $c, Å$ $9,929(4)$ Об'єм елементарної комірки, ų $151,9(1)$ Розрахована густина, g/cm³ $6,534$ Коефіцієнт адсорбції, 1/мм $34,628$ Розмір кристала, мм³ $0,09 \times 0,03 \times 0,06$ Випромінювання і довжина хвилі, Å $MoKa, 0,71073$ ДифрактометрBruker D8 VentureКількість уточнюваних параметрів 10 Уточнення F^2 $2\theta_{max}$ та (sin $\theta/\lambda)_{max}$ $66,71, 0,774$ h, k, l $-5 < h < 6$ Загальна кількість відбить 558 Кількість незалежних відбить $111 (R_{int} = 0,016)$ Кількість відбить з $I_{k} \ge 2\sigma(I_{0})$ $0,015 (0,016)^{ai}$ Фактор розбіжності R1 (R1 всі відбиття)^{ai} $0,015 (0,016)^{ai}$ $wR_2 (wR_2$ всі відбиття) ⁶ $0,036 (0,042)^{60}$ S по F^2 : $1,36$ Коефіцієнт екстинкції: $0,017(2)$ $\Delta\rho_{max}$ Ta $\Delta\rho_{min}, e Å^{-3}$ $0,68/-0,64$	Формула	Y0,76Yb0,24Fe2Si2
Просторова група I4/mmm (№ 139) Символ Пірсона, Z t/10, 2 Параметри комірки 3,911(1) c, Å 3,911(1) c, Å 9,929(4) O6'єм елементарної комірки, ų 151,9(1) Poзрахована густина, g/cm³ 6,534 Koeфiцieнт адсорбції, 1/мм 34,628 Poзмір кристала, Mм³ 0,09×0,03×0,06 Випромінювання і довжина хвилі, Å MoKa, 0,71073 Дифрактометр Bruker D8 Venture Кількість уточнюваних параметрів 10 Уточнення F^2 2θ _{max} та (sin θ'λ) _{max} 66,71, 0,774 h, k, l -5< h <6	Сингонія	тетрагональна
Символ Пірсона, Z tl 10, 2 Параметри комірки a, Å 3, 911(1) c, Å 3,911(1) Poзрахована густина, g/cm ³ 6,534 Коефіцієнт адсорбції, 1/мм 34,628 Poзмір кристала, мм ³ 0,09×0,03×0,06 Випромінювання і довжина хвилі, Å MoKa, 0,71073 Дифрактометр Bruker D8 Venture Кількість уточнюваних параметрів 10 Уточнення F^2 $2\theta_{max}$ та (sin θ/λ) _{max} 66,71, 0,774 h, k, l F^2 $2\theta_{max}$ та (sin θ/λ) _{max} 66,71, 0,774 h, k, l F^2 $2\sigma_{max}$ та (sin θ/λ) _{max} F^2 $3araльна кількість відбить Кількість незалежних відбить Кількість вездлежних відбить 558 Кількість відбить 3 I_0 \ge 2\sigma(I_0) 107 (R_{\sigma} = 0,009)Фактор розбіжності R1 (R1 всі відбиття)a) 0,015 (0,016)a)wR_2 (wR_2 всі відбиття)6 0,036 (0,042)6)S по F^2: 1,36Коефіцієнт екстинкції: 0,017(2)\Delta\rho_{max} Ta \Delta\rho_{min}, e Å-3 0,68/-0,64$	Просторова група	<i>I</i> 4/ <i>mmm</i> (№ 139)
Параметри комірки3,911(1) $a, Å$ 3,911(1) $c, Å$ 9,929(4)Oб'єм елементарної комірки, ų151,9(1)Розрахована густина, g/cm³6,534Коефіцієнт адсорбції, 1/мм34,628Розмір кристала, мм³0,09×0,03×0,06Випромінювання і довжина хвилі, ÅМоКа, 0,71073ДифрактометрBruker D8 VentureКількість уточнюваних параметрів10Уточнення F^2 $2\theta_{max}$ та (sin θ/λ)max $66,71,0,774$ h, k, l $-5< h < 6$ Загальна кількість відбить558Кількість відбить з $I_{0} \ge 2\sigma(I_{0})$ 107 ($R_{\sigma} = 0,009$)Фактор розбіжності R1 (R1 всі відбиття) ^{a)} 0,015 (0,016) ^{a)} wR_2 (wR_2 всі відбиття) ⁵⁾ 0,036 (0,042) ⁶⁾ S по F^2 :1,36Коефіцієнт екстинкції:0,017(2) $\Delta\rho_{max}$ та $\Delta\rho_{min}, e Å^{-3}$ 0,68/-0,64	Символ Пірсона, Z	<i>tI</i> 10, 2
a, Å3,911(1)c, Å9,929(4)O6'єм елементарної комірки, ų151,9(1)Pозрахована густина, g/cm³6,534Koeфіцієнт адсорбції, 1/мм34,628Pозмір кристала, мм³0,09×0,03×0,06Випромінювання і довжина хвилі, ÅМоКа, 0,71073ДифрактометрBruker D8 VentureКількість уточнюваних параметрів10Уточнення F^2 2 θ_{max} та (sin θ/λ)max66,71, 0,774h, k, l-5< h <6	Параметри комірки	
c, Å9,929(4)O6'єм елементарної комірки, ų151,9(1)Poзрахована густина, g/cm³6,534Koeфiцієнт адсорбції, 1/мм34,628Poзмір кристала, мм³0,09×0,03×0,06Випромінювання і довжина хвилі, ÅМоКа, 0,71073ДифрактометрBruker D8 VentureКількість уточнюваних параметрів10Уточнення F^2 $2\theta_{max}$ та (sin θ/λ)max66,71, 0,774h, k, l-5< h <6	a, Å	3,911(1)
Об'єм елементарної комірки, $Å^3$ 151,9(1)Розрахована густина, g/cm³6,534Коефіцієнт адсорбції, 1/мм34,628Розмір кристала, мм³0,09×0,03×0,06Випромінювання і довжина хвилі, ÅМоКа, 0,71073ДифрактометрBruker D8 VentureКількість уточнюваних параметрів10Уточнення F^2 $2\theta_{max}$ та (sin θ/λ) _{max} 66,71, 0,774 h, k, l -5< h < 6	<i>c</i> , Å	9,929(4)
Розрахована густина, g/cm³6,534Коефіцієнт адсорбції, 1/мм34,628Розмір кристала, мм³0,09×0,03×0,06Випромінювання і довжина хвилі, ÅМоКа, 0,71073ДифрактометрBruker D8 VentureКількість уточнюваних параметрів10Уточнення F^2 $2\theta_{max}$ та (sin θ/λ) _{max} 66,71, 0,774 h, k, l -5< h <6	Об'єм елементарної комірки, Å ³	151,9(1)
Косфіцієнт адсорбції, 1/мм34,628Розмір кристала, мм³ $0,09 \times 0,03 \times 0,06$ Випромінювання і довжина хвилі, Å $MoKa, 0,71073$ ДифрактометрBruker D8 VentureКількість уточнюваних параметрів 10 Уточнення F^2 $2\theta_{max}$ та $(\sin \theta/\lambda)_{max}$ $66,71, 0,774$ h, k, l $-5 < h < 6$ Загальна кількість відбить 558 Кількість незалежних відбить $111 (R_{int} = 0,016)$ Кількість відбить з $I_0 \ge 2\sigma(I_0)$ $107 (R_{\sigma} = 0,009)$ Фактор розбіжності R1 (R1 всі відбиття) ^{a)} $0,015 (0,016)^{a)}$ $wR_2 (wR_2$ всі відбиття) ⁵⁾ $0,036 (0,042)^{6)}$ S по F^2 : $1,36$ Косфіцієнт екстинкції: $0,68/-0,64$	Розрахована густина, g/cm ³	6,534
Розмір кристала, мм³ $0,09 \times 0,03 \times 0,06$ Випромінювання і довжина хвилі, ÅМоКа, 0,71073ДифрактометрBruker D8 VentureКількість уточнюваних параметрів10Уточнення F^2 $2\theta_{max}$ та (sin θ/λ)max66,71, 0,774 h, k, l -5< h < 6	Коефіцієнт адсорбції, 1/мм	34,628
Випромінювання і довжина хвилі, ÅМо Ka , 0,71073ДифрактометрBruker D8 VentureКількість уточнюваних параметрів10Уточнення F^2 $2\theta_{max}$ та (sin θ/λ)max66,71, 0,774h, k, l-5< h <6	Розмір кристала, мм ³	0,09×0,03×0,06
ДифрактометрBruker D8 VentureКількість уточнюваних параметрів10Уточнення F^2 $2\theta_{max}$ та $(\sin \theta/\lambda)_{max}$ 66,71, 0,774 h, k, l -5< $h < 6$ Загальна кількість відбить-4< $k < 6$ Кількість незалежних відбить111 ($R_{int} = 0,016$)Кількість відбить з $I_0 \ge 2\sigma(I_0)$ 107 ($R_{\sigma} = 0,009$)Фактор розбіжності R1 (R1 всі відбиття) ^{a)} 0,015 (0,016) ^{a)} wR_2 (wR_2 всі відбиття) ⁵⁾ 0,036 (0,042) ⁶⁾ S по F^2 :1,36Коефіцієнт екстинкції:0,017(2) $\Delta \rho_{max}$ та $\Delta \rho_{min}, e Å^{-3}$ 0,68/-0,64	Випромінювання і довжина хвилі, Å	ΜοΚα, 0,71073
Кількість уточнюваних параметрів10Уточнення F^2 $2\theta_{max}$ та (sin θ/λ) _{max} 66,71, 0,774h, k, l-5< h <6	Дифрактометр	Bruker D8 Venture
Уточнення F^2 $2\theta_{max}$ та (sin θ/λ) _{max} 66,71, 0,774h, k, l-5< h < 6	Кількість уточнюваних параметрів	10
$2 \theta_{max}$ τα (sin θ/λ)max66,71, 0,774h, k, l-5< h <6	Уточнення	F^2
h, k, l $-5 < h < 6$ $-4 < k < 6$ $-14 < l < 14$ Загальна кількість відбить558 (Гансе 0,016)Кількість незалежних відбить111 ($R_{int} = 0,016$) 107 ($R_{\sigma} = 0,009$)Фактор розбіжності R1 (R1 всі відбиття) ^{a)} 0,015 (0,016) ^{a)} 0,036 (0,042) ⁶⁾ Упо F ² :1,36 Коефіцієнт екстинкції:Коефіцієнт екстинкції:0,017(2) 0,68/-0,64	$2\theta_{\text{max}}$ τα $(\sin\theta/\lambda)_{\text{max}}$	66,71, 0,774
-4< k<6 -14< l<14	h, k, l	-5< <i>h</i> <6
$-14 < l < 14$ Загальна кількість відбить558Кількість незалежних відбить111 ($R_{int} = 0,016$)Кількість відбить з $I_0 \ge 2\sigma(I_0)$ 107 ($R_{\sigma} = 0,009$)Фактор розбіжності R1 (R1 всі відбиття) ^{a)} 0,015 (0,016) ^{a)} wR_2 (wR_2 всі відбиття) ⁶⁾ 0,036 (0,042) ⁶⁾ S по F^2 :1,36Коефіцієнт екстинкції:0,017(2) $\Delta \rho_{max}$ та $\Delta \rho_{min}$, $e Å^{-3}$ 0,68/-0,64		-4< <i>k</i> <6
Загальна кількість відбить558Кількість незалежних відбить111 ($R_{int} = 0,016$)Кількість відбить з $I_0 \ge 2\sigma(I_0)$ 107 ($R_{\sigma} = 0,009$)Фактор розбіжності R1 (R1 всі відбиття) ^{a)} 0,015 (0,016) ^{a)} wR_2 (wR_2 всі відбиття) ⁶⁾ 0,036 (0,042) ⁶⁾ S по F^2 :1,36Коефіцієнт екстинкції:0,017(2) $\Delta \rho_{max}$ та $\Delta \rho_{min}$, e Å ⁻³ 0,68/-0,64		-14< <i>l</i> <14
Кількість незалежних відбить $111 (R_{int} = 0,016)$ Кількість відбить з $I_0 \ge 2\sigma(I_0)$ $107 (R_{\sigma} = 0,009)$ Фактор розбіжності $R1 (R1$ всі відбиття) ^{а)} $0,015 (0,016)^{a)}$ $wR_2 (wR_2$ всі відбиття) ^{б)} $0,036 (0,042)^{6)}$ S по F^2 : $1,36$ Коефіцієнт екстинкції: $0,017(2)$ $\Delta \rho_{max}$ та $\Delta \rho_{min}, e Å^{-3}$ $0,68/-0,64$	Загальна кількість відбить	558
Кількість відбить з $I_0 \ge 2\sigma(I_0)$ 107 ($R_{\sigma} = 0,009$)Фактор розбіжності $R1$ ($R1$ всі відбиття) ^a)0,015 (0,016) ^a) wR_2 (wR_2 всі відбиття) ^б)0,036 (0,042) ^б) S по F^2 :1,36Коефіцієнт екстинкції:0,017(2) $\Delta \rho_{max}$ та $\Delta \rho_{min}$, e Å ⁻³ 0,68/-0,64	Кількість незалежних відбить	111 ($R_{int} = 0,016$)
Φακτορ ροзδіжності R1 (R1 всі відбиття) ^{a)} 0,015 (0,016) ^{a)} wR_2 (wR_2 всі відбиття) ⁵⁾ 0,036 (0,042) ⁵⁾ S по F^2 : 1,36 Коефіцієнт екстинкції: 0,017(2) $\Delta \rho_{max}$ τα $\Delta \rho_{min}$, e Å ⁻³ 0,68/-0,64	Кількість відбить з $I_{ m o} \ge 2\sigma(I_{ m o})$	$107 (R_{\sigma} = 0,009)$
wR_2 (wR_2 всі відбиття) ⁵) 0,036 (0,042) ⁶) S по F^2 : 1,36 Коефіцієнт екстинкції: 0,017(2) $\Delta \rho_{\text{max}}$ та $\Delta \rho_{\text{min}}, e$ Å ⁻³ 0,68/-0,64	Фактор розбіжності R1 (R1 всі відбиття) ^{а)}	0,015 (0,016) ^{a)}
S по F^2 : 1,36 Коефіцієнт екстинкції: 0,017(2) $\Delta \rho_{\text{max}}$ та $\Delta \rho_{\text{min}}, e Å^{-3}$ 0,68/-0,64	$wR_2 (wR_2$ всі відбиття) ⁶⁾	0,036 (0,042) 6)
Коефіцієнт екстинкції: $0,017(2)$ $\Delta \rho_{\text{max}}$ та $\Delta \rho_{\text{min}}, e$ Å ⁻³ $0,68/-0,64$	S по F^2 :	1,36
$\Delta \rho_{\rm max}$ ta $\Delta \rho_{\rm min}$, <i>e</i> Å ⁻³ 0,68/-0,64	Коефіцієнт екстинкції:	0,017(2)
	$\Delta ho_{ m max}$ ta $\Delta ho_{ m min}$, e Å ⁻³	0,68/-0,64

^{a)} $\overline{R_1(F)} = [\Sigma(|F_o| - |F_c|)] / \Sigma |F_o|$

⁶⁾ $wR_2(F^2) = [\Sigma[w(F_o^2 - F_c^2)^2/\Sigma[w(F_o^2)^2]]^{1/2}; [w^{-1} = \sigma^2(F_o)^2 + P], де P = (F_o^2 + 2F_c^2)/3$

Модель кристалічної структури сполуки визначено прямими методами з використанням програми SIR97 [20] та уточнено в анізотропному наближенні теплових коливань для атомів РЗМ за допомогою програми SHELX-97 [21] у комплексі програм WinGX [22].

Результати дослідження та обговорення

Для визначення фазових рівноваг сполуки $Y_{0,76}Yb_{0,24}Fe_2Si_2$ і меж деяких твердих розчинів зразки досліджено методами Х-променевої дифракції та ЕДРС. За результатами Х-променевого та ЕДРС аналізів (рис. 1) у досліджуваному сплаві складу $Y_9Yb_7Fe_{56}Si_{28}$ виявлено сполуку $Y_{0,76}Yb_{0,24}Fe_2Si_2$, що перебуває у фазовій рівновазі з ($Y_{0,57}Yb_{0,43}$)Fe4Si₂ та ($Y_{0,57}Yb_{0,43}$)FeSi. За результатами Х-променевого фазового аналізу розраховано параметри кристалічних граток твердих розчинів: $Y_{0,76}Yb_{0,24}Fe_2Si_2$ (CT CeGa₂Al₂) a = 3,921(1), c = 9,939(2) Å; ($Y_{0,57}Yb_{0,43}$)Fe4Si₂ (CT ZrFe₄Si₂) a = 7,209(5), c = 3,818(3) Å; ($Y_{0,57}Yb_{0,43}$)FeSi (CT MnAlGe) a = 3,998(1), c = 6,859(2) Å.

Рис. 1. Фотографія мікрошліфа зразка У₉Уb₇Fe₅₆Si₂₈ у зворотньорозсіяних електронах: темна фаза – (Y_{0,57}Yb_{0,43})Fe₄Si₂; сіра фаза – Y_{0,76}Yb_{0,24}Fe₂Si₂; світла фаза – (Y_{0,57}Yb_{0,43})Fe₅₆Si₂₈

Fig. 1. Backscattered electron image of the annealed bulk sample Y₉Yb₇Fe₅₆Si₂₈ : dark phase – (Y_{0,57}Yb_{0,43})Fe4Si₂; gray phase – Y_{0,76}Yb_{0,24}Fe₂Si₂; light phase – (Y_{0,57}Yb_{0,43})FeSi.

Отримані результати X-променевого дослідження монокристала підтвердили для сполуки $Y_{0,76}Yb_{0,24}Fe_2Si_2$ структуру типу CeGa₂Al₂ з розташуванням атомів Y та Yb у положенні 2*a*, Fe та Si у положеннях 4*d* та 4*e*, відповідно. Фінальний розрахунок різницевої електронної густини у структурі виявив незначні максимуми (мінімуми) зі значеннями 0,68 (-0,64) еÅ⁻³. Кінцеві значення координат і параметрів теплового зміщення атомів подано у табл. 3, а міжатомні віддалі у кристалічній структурі сполуки – у табл. 4.

Таблиця 3

Координати та теплові параметри зміщення атомів (Ų)^{«)} у кристалічній структурі сполуки Y_{0,76}Yb_{0,24}Fe₂Si₂

Table 3

Atomic coordinates and	l displacement	parameters ^a (A	Å ²) ^a) for Y _{0.}	76Yb0,24Fe2Si2
------------------------	----------------	----------------------------	-------------------------------	-----------------------	----------------

Атом	ПСТ	x	У	Ζ	$U_{ m eq}/U_{ m iso}$	U_{11}	U_{22}	U33
$R^{\tilde{o})}$	2a	0	0	0	0,0054(2)	0,0052(3)	0,0052(3)	0,0060(3)
Fe	4d	0	1/2	1/4	0,0051(3)	0,0057(3)	0,0057(3)	0,0040(4)
Si	4e	0	0	0,3760(1)	0,0056(3)	0,0049(4)	0,0049(4)	0,0069(6)
$^{a)}U_{23} = U_{13} = U_{12} = 0.$								

 $^{6)}R = 0,767(5)$ Y+0,233(5)Yb.

Таблиия 4

Міжатомні віддалі (б, Å) у кристалічній структурі сполуки Y0,76Yb0,24Fe2Si2

Table 4

Interatomic distances (Å) for Y _{0,76} Yb _{0,24} Fe ₂ Si ₂					
A	Атоми	δ			
<i>R</i> –	8 Si	3,027(1)			
	8 Fe	3,160(1)			
	2 Si	3,733(2)			
	4 <i>R</i>	3,911(1)			
Fe –	4 Si	2,322(1)			
	4 Fe	2,766(1)			
	4 <i>R</i>	3,160(1)			
Si –	4 Fe	2,322(1)			
	Si	2,462(3)			
	4 R	3,027(1)			
	R	3,733(2)			
R = 0,767	(5)Y + 0,233(5)	5)Yb			

Кристалічна структура та координаційні поліедри атомів у структурі сполуки $Y_{0,76}Yb_{0,24}Fe_2Si_2$ зображено на рис. 2. Різні за розмірами атоми у структурі характеризуються різними значеннями координаційних чисел – 22 (атоми *R*), 12 (Fe), 10 (Si). Координаційний многогранник (KM) найбільших атомів *R* є 22-вершинник [*RR*4Fe8Si10] з 12 чотирикутними та 24 трикутними гранями. KM атомів Fe – деформований кубооктаедр [Fe*R*4Fe4Si4].

Найближчі сусіди атомів Si – 4R та 4Fe – утворюють тетрагональну антипризму, квадратна грань якої утворена чотирма атомами R, центрована атомом Si. Інша грань утворена чотирма атомами Fe, яка також центрована атомом *R*. Разом вони формують десятивершинник складу [SiR4Fe4SiR].

Міжатомні віддалі у структурі $Y_{0,76}$ Yb_{0,24}Fe₂Si₂, за винятком Fe–Si, є більшими від суми металічних радіусів відповідних атомів (rY = 1,7 Å, rYb = 1,76 Å, rFe = 1,26 Å, rSi = 1,17 Å). Відстані Fe–Si становлять 2,322(1) Å і зменшуються (приблизно на 4%) порівняно з сумою атомних радіусів Fe та Si (1,26 + 1,17 = 2,43 Å), що свідчить про суттєву взаємодію між Fe i Si у структурі.

Рис. 2. Кристалічна структура та координаційні поліедри атомів у кристалічній структурі сполуки Y_{0.76}Yb_{0.24}Fe₂Si₂. Атоми відповідно виділені: *R* – червоним; Fe – зеленим; Si – голубим кольорами.

Fig. 2. The crystal structure of the $Y_{0.76}$ Yb_{0.24}Fe₂Si₂ and the coordination polyhedra of the atoms. *R* – red spheres; Fe – green spheres; Si – blue spheres.

Рис. 3. Зміна об'єму елементарної комірки залежно від *R* для ізоструктурних сполук ряду *R*Fe₂Si₂ наведена за даними [5, 8, 10, 23, 24]. Об'єм елементарної комірки для УFe₂Si₂ [5] на графіку позначено затемненим колом.

Fig. 3. Unit cell volume change for RFe_2Si_2 for R = Y, La-Lu [5, 8, 10, 23, 24]. Unit cell volume for YFe_2Si_2 [5] is is highlighted with a gray circle.

Як видно з рис. 3, для ряду RFe_2Si_2 об'єм елементарних комірок майже не відхиляється від лінійної залежності об'єму елементарної комірки від типу РЗМ, що свідчить про їхній подібний ступінь окиснення.

Заміщення близько 1/4 атомів Ý на атоми Yb незначно вплинуло на зміну об'єму елементарної комірки YFe₂Si₂, що свідчить про переважаючий ступінь окиснення атомів Yb³⁺, радіус якого $r_{Yb}^{3+}=1,01$ Å близький до величини радіусу йона Y³⁺ ($r_{Y}^{3+}=1,04$ Å) [25]. Негативні відхилення від лінійної залежності для CeFe₂Si₂ і позитивні для EuFe₂Si₂ свідчать про можливий ступінь окиснення атомів церію 4+ та атомів європію 2+ у цих сполуках.

Висновки

Уперше проведено повне структурне дослідження монокристала сполуки $Y_{0,76}Yb_{0,24}Fe_2Si_2$, що належить до структурного типу CeGa₂Al₂, символ Пірсона *tl*10, просторова група *I4/mmm*, періоди елементарної комірки a = 3,911(1), c = 9,929(4) Å, Z = 2, R1 = 0,015, wR2 = 0,036 для 107 рефлексів з $I_o > 2\sigma(I_o)$ та 10 уточнюваних параметрів. Координати атомів: 2R у 2a 0 0 0; 4Fe y 4d 0 1/2 1/4; 4Si y 4e 0 0 z, z=0,3760(1). Склад сполуки підтверджено результатами енергодисперсійної Х-променевої спектроскопії.

Проведено кристалохімічний аналіз сполук РЗМ стехіометричного складу *R*Fe₂Si₂. Заміщення близько 1/4 атомів Y на атоми Yb незначно вплинуло на зміну об'єму елементарної комірки внаслідок близькості радіусів йонів Y³⁺ та Yb³⁺.

Подяка

Робота виконана за фінансової підтримки Міністерства освіти і науки України та Simons Foundation (Award Number: 1290588).

Автори висловлюють подяку доктору В. Сметані (Університет Оргуса, Данія) за збір масиву інтенсивностей Х-променевої дифракції монокристала.

ЛІТЕРАТУРА

- Rieger W., Parthé E. Ternäre Erdalkali- und Seltene Erdmetall-Silicide und -Germanide mit ThCr₂Si₂-Struktur. Monatsh. Chem. 1969. Vol. 100. P. 444–454. https://doi.org/10.1007/ BF00904086.
- Zarechnyuk O.S., Kripyakevich P.I., Gladyshevsky E.I. Ternary intermetallic compounds with the superstructure to the BaAl₄ type. Kristallografiya. 1964. Vol. 9. P. 835–838 (in Russian).
- Ban Z., Sikirica M. The crystal structure of ternary silicides ThM₂Si₂ (M = Cr, Mn, Fe, Co, Ni and Cu). Acta Crystallogr. 1965. Vol. 18. P. 594–599. https://doi.org/10.1107/ S0365110X6500141X.
- 4. *Andress K.R., Alberti E.* X-ray investigation of Aluminum–Barium alloys. Z. Metallkd.1935. Vol. 27. P. 126–128. https://doi.org/10.1515/ijmr-1935-271-1243.
- Rossi D., Marazza R., Ferro R. Lattice parameters of some ThCu₂Si₂-type phases in ternary alloys of rare earths with cobalt (or iron) and silicon (or germanium). J. Less-Common Met. 1978. Vol. 58. P. 203–207. https://doi.org/10.1016/0022-5088(78)90201-1.
- 6. Bodak O.I., Gladyshevskii E.I., Yarovets V.I., Davydov V.M., Il'chuk T.V. The systems (Y, Gd)–Fe–Si. Izv. AN USSR. Inorg. Mater. 1978. Vol. 14. P. 366–369 (in Russian).

- Umarji A.M., Noakes D.R., Viccaro P.J., Shenoy G.K., Aldred A.T., Niarchos D. Magnetic properties of REFe₂Si₂ compounds. J. Magn. Magn. Mat. 1983. Vol. 36. P. 61–65. https://doi.org/10.1016/0304-8853(83)91044-2.
- Noakes D.R., Umarji A.M., Shenoy G.K. Mössbauer studies of REFe₂Si₂ (RE = Gd–Lu) compounds. J. Magn. Magn. Mater. 1983. Vol. 39. P. 309–316. https://doi.org/10.1016/0304-8853(83)90091-4.
- Pearson W. B., Villars P. Analysis of the unit cell dimensions of phases with the BaAl4 (ThCr₂Si₂) structure I: Rare earth phases of manganese, iron, cobalt, nickel or copper with silicon or germanium. J. Less Comm. Met. 1984. Vol. 97. P. 119–132. https://doi.org/ 10.1016/0022-5088(84)90015-8.
- Bara J.J., Hrynkiewicz H.U., Miłoś A., Szytuła A. Investigation of the crystal properties of RFe₂Si₂ and RFe₂Ge₂ by X-ray diffraction and Mössbauer spectroscopy. J. Less-Common Met. 1990. Vol. 161. P. 185–192. https://doi.org/10.1016/0022-5088(90)90026-G.
- Goto R., Noguchi S., Ishida T. Superconductivity in ternary iron silicide YFe₂₋₈Si₂ single crystal. Physica C. 2010. Vol. 470. P. S404–S405. https://doi.org/10.1016/j.physc.2010. 01.025.
- Babizhetskyy V., Kotur B. Non-stoichiometry of GdFe₂Si₂: a single crystal study. Proc. Shevchenko Sci. Soc. 2021. Vol. LXVI. P. 107–116. https://doi.org/10.37827/ntsh.chem. 2021.66.107.
- Pikul A. P., Samsel-Czeka M., Chajewski G., Romanova T., Hackemer A., Gorzelniak R., Wisniewski P., Kaczorowski D. Search for unconventional superconductors among the YTE₂Si₂ compounds (TE = Cr, Co, Ni, Rh, Pd, Pt). J. Phys.: Condens. Matter. 2017. Vol. 29. 195602 (11 pp). https://doi.org/10.1088/1361-648X/aa6832.
- Felner I., Bing Lv., Chu C. W. Magnetic and structural relationship of RFe₂Si₂ and R(Fe_{1-x}M_x)₂Si₂ (x=0-1) system (R=La, Y and Lu, M=Ni, Mn and Cu). J. Phys.: Condens. Matter. 2014. Vol. 26. 476002 (11 pp). https://doi.org/10.1088/0953-8984/26/47/476002.
- Ijjaali I. Venturini G. Malaman B. Evidence of a magnetic moment on the transition metal sublattice in RFe2-xCr_xSi₂ compounds (R = Y, La, Nd, Tb; 0.25 ≤ x ≤ 1.75) J. Alloys Compd. 1998. Vol. 279. P. 102–109. https://doi.org/10.1016/S0925-8388(98)00659-8.
- Felner I., Mayer I., Grill A., Schieber M. Magnetic ordering in rare earth iron silicides and germanides of the RFe₂X₂ type. Solid State Commun. 1975. Vol. 16. P. 1005–1009. https://doi.org/10.1016/0038-1098(75)90640-7.
- 17. *Braun H. F.* Superconductivity in ternary rare earth-transition metal silicides: A critical review. J. Less Common Met. 1984. Vol. 100. P. 105–124. https://doi.org/10.1016/0022-5088(84)90057-2.
- Felner I., Bing Lv., Zhao K., Chu C. W. High-pressure resistivity of YFe₂Si₂ and magnetic studies of Y_{1-y}Ho_yFe₂Si₂ and YFe₂(Si_{1-x}Ge_x)₂ systems. J. Supercond. Nov. Magn. 2015. Vol. 28. P. 1207–1216. https://doi.org/10.1007/S10948-015-3011-Z.
- Akselrud L., Grin Y. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 2014. Vol. 47. P. 803–805. https://doi.org/10.1107/ S1600576714001058.
- Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. SIR97: a new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 1999. Vol. 32. P. 115–119. (https://doi.org/10.1107/S0021889898007717).
- 21. *Sheldrick G.M.* SHELXT Integrated space-group and crystal-structure determination. Acta Crystallogr. A. 2015. Vol. 71. P. 3–8. https://doi.org/10.1107/S2053273314026370.
- Farrugia L. J. WinGX suite for small-molecule single-crystal crystallography (WinGX, Version 1.64.05), J. Appl. Crystallogr. 1999. Vol. 32. 837–838. https://doi.org/10.1107/ S0021889899006020.

- Mayer I., Felner I. Europium silicides and germanides of the EuM₂X₂ type. Crystal structure and the valence states of europium. J. Phys. Chem. Solids. 1977. Vol. 38. P. 1031–1034. https://doi.org/10.1016/0022-3697(77)90206-2
- Bardin O.I., Dashkevych M., Belan B.D., Manyako M.B., Koval L.B., Gladyshevskii R.E. Interaction of components in the Tm–Fe–Si system at 800 °C. Ukr. Chem. J. 2011. Vol. 77(7). P. 7–15.
- 25. *Holleman A.F.* in: E. Wiberg, N. Wiberg (Eds.), Lehrbuch der anorganischen Chemie, De Gruyter, Berlin-New York, 1995. P. 1838–1840.

SUMMARY

Volodymyr BABIZHETSKYY¹, Oksana MYAKUSH², Anatoliy ZELINSKIY¹

CRYSTAL STRUCTURE OF THE COMPOUND Y_{1-x}Yb_xFe₂Si₂ x=0.24: SINGLE CRYSTAL INVESTIGATION

¹Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: volodymyr.babizhetskyy@lnu.edu.ua

²National University of Forest and Wood Technology of Ukraine, Chuprynky Str., 103, 79057 Lviv, Ukraine

For the first time, the complete single-crystal structure study of the compound Y_{1-x}Yb_xFe₂Si₂ x=0.24 was performed. It belongs to the CeGa₂Al₂ structure type, Pearson's symbol t/10,139, space group I4/mmm, lattice parameters a = 3.911(1), c = 9.929(4) Å, Z = 2. The compound was prepared by arc-melting of the initial elements with a purity of not less than 99.9 % under argon followed by annealing in silica tubes at 870 K for 1400 h. Single crystals for structural examination were selected under a microscope from the broken alloys obtained. X-ray diffraction data of one of the irregularly faceted single crystals was obtained at a temperature of 300(2) K using a single crystal X-ray diffractometer Bruker D8 Venture with monochromatized MoK α radiation. The structure is refined using the program SHELXL, version 2018/3 (full-matrix least-squares refinement with anisotropic atomic parameters), RI = 0.015, wR2 = 0.036 for 107 unique reflections with $I_o > 0.015$ $2\sigma(I_o)$ and 10 refined parameters. Coordinates of atoms are the following: 2R at 2a 0 0 0; 4Fe at 4d 0 1/2 1/4; 4Si at 4e 0 0 z, z=0.3760(1), R = 0.767(5)Y + 0.233(5)Yb. The coordination numbers of R, Fe, and Si atoms are 20, 12, and 10, respectively. The interatomic distances, except Fe-Si, are longer than the sum of the metallic radii of the corresponding atoms. Fe-Si distances (2.322(1) Å) are smaller than the sum of the radii of these atoms (2.43 Å) and indicate a significant interaction between Fe and Si in the structure. Currently known RFe_2Si_2 (R=Y, Yb) are members of complete series of compounds RFe_2Si_2 (R=rare earths) isotypic with CeGa₂Al₂. A partial substitution Y by Yb does not change the crystal structure as well a cell volume of $Y_{1-x}Yb_xFe_2Si_2 x=0.24.$

Keywords: ternary silicides, rare earth elements, single crystal, crystal structure.

Стаття надійшла: 22.07.2024. Після доопрацювання: 25.08.2024. Прийнята до друку: 04.10.2024.