Galyna NYCHYPORUK, Oresta DMYTRAKH, Yaroslav KALYCHAK
Inorganic Chemistry Department, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: yaroslav.kalychak@lnu.edu.uaDOI: https://doi.org/10.37827/ntsh.chem.2024.75.028
THE SYSTEM La–Ni–In: PHASE EQUILIBRIA AND CRYSTAL STRUCTURES OF COMPOUNDS
Interaction between the components in the La–Ni–In system was investigated by X-ray powder diffraction and, partially, scanning electron microscopy with energy-dispersive X-ray spectroscopy. Isothermal section of the phase diagram was constructed in full concentration range at 870 K (0–0.333 at. part La) and 670 K (> 0.333 at. part La). The samples were synthesized in an arc-furnace on a water-cooled Cu-plate under an argon atmosphere and annealed in silica tubes at 870 K for one month (range 0–0.333 at. part. La) and at 670 K (range > 0.333 at. part. La) for two months. The phase analysis was performed by X-ray powder diffraction method. Microstructures of polished samples and quantitative and qualitative analysis were carried out on a Tescan Vega 3 LMU scanning electron microscope equipped with an Oxford Instruments SDD X-MaxN20 detector. Fourteen ternary compounds, namely LaNi7In6 (LaNi7In6-type structure), LaNi9In2 (YNi9In2-type structure), LaNi3In6 (LaNi3In6-type structure), LaNi5In (CeNi5Sn-type structure), LaNi3In2 (HoNi2.6Ga2.4-type structure), LaNiIn4 (YNiAl4-type structure), La4Ni7In8 (Ce4Ni7In8-type structure), La5Ni6In11 (Pr5Ni6In11-type structure), LaNi2In (PrCo2Ga-type structure), LaNiIn (ZrNiAl-type structure), LaNi0.5–0.25In1.5–1.75 (AlB2-type structure), La2Ni2In (Mo2FeB2-type structure and о-La2Ni2In-type structure), La11Ni4In9 (Nd11Pd4In9-type structure), La12Ni6In (Sm12Ni6In-type structure) exist in the La–Ni–In system at the temperature of investigation. The crystal structure of о-La2Ni2In and La12Ni6In compounds was refined using powder data (STOE STADI P, Cu Kα1–radiation). The substitution of Ni for In was observed for compounds with AlB2- and YNi9In2-types structure and its composition can be described by the formulas LaNi0.5–0.25In1.5–1.75 and LaNi9–8.2In2–2.8 respectively. Binary compound LaNi5 dissolves up to 8.5 at. % of In and La2In – up to 5 at. % of Ni. Compounds of the La–Ni–In system can be divided into three groups: nickel-rich compounds are complex multi-layered with high values of coordination numbers of atoms; compounds of the middle part of the concentration triangle – two-layered compounds with coordination polyhedra in the form of prisms; compounds rich in lanthanum are complex multi-layered compounds with relatively low values of coordination numbers of atoms.
Keywords: indide, powder data, ternary system, ternary compound.
References:
-
1. Kalychak Ya. M., Zaremba V. I., Pöttgen R., Lukachuk M., Hoffmann R.-D. Rare Earth–Transition Metal–Indides.
In: K. A. Gschneidner, Jr., J.-C. Bünzli, V. K. Pecharsky (Eds.). Handbook on the Physics and Chemistry of Rare
Earths. Elsevier, Amsterdam. 2005. Vol. 34. P. 1–133. (https://doi.org/10.1016/S0168-1273(04)34001-8).
2. Kalychak Ya. Peculiarities of the composition and structure of the compounds of the rare-earth–Ni–In system. J.
Alloys Compd. 1997. Vol. 262–263. P. 341–345. (https://doi.org/10.1016/S0925-8388(97)00402-7).
3. Zaremba V., Dzevenko M., Nychyporuk G., Kalychak Ya. Phase equlibrium in the Y–Ni–In systhem at 870 K. Visn.
Lviv University, Ser. Chem. 2021. 62. P. 18–27 (in Ukrainian). (https:/doi.org/10.30970/vch.6201.018).
4. Kalychak Ya. The component interaction in Ce–Ni–In system. Ukr. Chem. Jorn. 1998. Vol. 64(7). P. 15–20 (in
Ukrainian).
5. Zaremba V., Dzevenko M., Pöttgen R., Kalychak Ya. Phase equilibrium in the Gd–Ni–In system at T = 870 K. Z.
Naturforsch. B. 2019. Vol. 74(7–8). P. 613–618. (https://doi.org/10.1515/znb-2019-0083).
6. Dzevenko M., Tyvanchuk Yu., Demidova Ch., Lukachuk M., Kalychak Ya. Phase equilibria in Tb–Ni–In system at 870
K. Visnyk Lviv Univ. Ser. Chem. 2014. Iss. 55(1). P. 21–28 (in Ukrainian).
7. Tyvanchuk Yu. B., Zaremba V. I., Akselrud L. G., Szytula A., Kalychak Ya. M. The Dy–Ni–In system at 870 K:
isothermal section, solid solutions, crystal structures. J. Alloys Compd. 2017. Vol. 704. P. 717–723.
(https://doi.org/10.1016/j.jallcom.2017.02.023).
8. Zaremba V., Dzevenko M., Nychyporuk G., Maletska Yu., Kalychak Ya. The system Ho–Ni–In at 870 K. Visnyk Lviv
Univ. Ser. Chem. 2022. Iss. 63. P. 16–28 (in Ukrainian). (https:/doi.org/10.30970/vch.6301.016).
9. Dzevenko M., Tyvanchuk Yu., Bratash L., Zaremba V., Havela L., Kalychak Ya. Ternary system Er–Ni–In at T = 870
K. J. Solid State Chem. 2011. Vol. 184(10). P. 2707–2712. (https://doi.org/10.1016/j.jssc.2011.08.006).
10. Tyvanchuk Yu. B., Lukachuk M., Pöttgen R., Szytula A., Kalychak Ya. M. The ternary system Tm–Ni–In at 870 K.
Z. Naturforsch. B. 2015. Vol. 70. P. 665–670. (https://doi.org/10.1515/znb-2015-0075).
11. Zaremba V., Nychyporuk G., Dzevenko M., Kalychak Ya. Ternary system Lu–Ni–In at T = 870 K. Visnyk Lviv Univ.
Ser. Chem. 2023. Iss. 64. P. 14–25 (in Ukrainian). (https:/doi.org/10.30970/vch.6401.014).
12. Kalychak Ya. M., Zaremba V.I., Galadzhun Ya.V., Miliyanchuk K.Yu., Hoffmann R.–D., Pöttgen R. New ∞1[Ni7]
cluster in LaNi7In6 and distorted bcc indium cubes in LaNiIn4. Chem. Eur. J. 2001. Vol. 7. P. 5343–5349.
(https://doi.org/10.1002/1521-3765(20011217)7:24<5343::AID-CHEM5343>3.0.CO;2-%23).
13. Bigun I., Dzevenko M., Havela L., Kalychak Ya. RENi9In2 (RE = Rare-Earths Metal): Crystal Chemistry,
Hydrogen Absorption, and Magnetic properties. Eur. J. Inorg. Chem. 2014. Vol. 16. P. 2631–2642.
(https://doi.org/10.1002/ejic.201400058).
14. Kalychak Ya., Dzevenko M., Babizhetskyy V., Daszkiewicz M., Gulay L. Single-crystal structure determination
of LaNi5–xInx and LaNi9–xIn2+x. Z. Naturforsch. 2020. Vol. 75b. P. 553–557.
(https://doi.org/10.1515/znb-2020-0020).
15. Pustovoychenko М., Pavlyk V., Kalychak Ya. Synthesis and crystal structure of LaNi5In and Sm2Ni2–xIn x =
0.20. Chem. Met. Alloys. 2011. Vol. 4. P. 113–118. (https://doi.org/10.30970/cma4.0176).
16. Ferro R., Marazza R., Rambaldi G. Equiatomic ternary phases in the alloys of the rare earths with indium and
nickel or palladium. Z. Metallkunde. 1974. Bd. 65. S. 37–39. (https://doi.org/10.1515/ijmr-1974-650106).
17. Pustovoychenko M., Svitlyk V., Kalychak Ya. Orthorombic La2Ni2In form – a new intergrowth CsCl- and AlB2-
type slabs. Intermetallics. 2012. Vol. 24. P. 30–32. (https://doi.org/10.1016/j.intermet.2012.01.007).
18. Pustovoychenko M., Tyvanchuk Yu., Hayduk I., Kalychak Ya. Crystal structure of the RE11Ni4In9 compounds (RE
= La, Ce, Pr, Nd, Sm, Gd, Tb and Y). Intermetallics. 2010. Vol. 18. P. 929–932.
(https://doi.org/10.1016/j.intermet.2010.01.003).
19. Provino A., Gschneidner K. A., Jr., Dhar S. K., Ferdeghini C., Mudryk Y., Manfrinetti P., Paudyal D.,
Pecharsky V. K. The nano-microfibrous R11Ni4In9 intermetallics: New compounds and exstraordinary anisotropy in
Tb11Ni4In9 and Dy11Ni4In9. Acta Materialia. 2015. Vol. 91. P. 128–140.
(https://doi.org/10.1016/j.actamat.2015.03.003).
20. Sung H. H., Wu H. H., Syu K. J., Lee W. H., Chen Y. Y. A new Kondo antiferromagnet Ce(Ni0.25In1.75). J.
Phys.: Condens. Matter. 2009. Vol. 21. P. 176004 (4 PP). (https://doi.org/10.1088/0953-8984/21/17/176004).
21. Bulyk I. I. Interaction of the RNi5In (R = La, Ce and Nd) compounds with hydrogen. Int. J. Hydrogen Energy.
1999. Vol. 24. P. 927–932. (https://doi.org/10.1016/S0360-3199(98)00169-4).
22. Fruchart D., Bouondina M., Kalychak Ya. M. The new hydrogen compounds RNi2InHx (R = La, Pr, Nd). Coll.
Abstr. VII international conference on crystal chemistry of intermetallic compounds (Ukraine, L’viv, September
22-25, 1999). 1999. L’viv. Ukraine. P. B4.
23. Fruchart D., Bouondina M., Gignoux D., Kalychak Ya. M., Galadzhun Ya. V. Synthesis, crystallographic
characteristics of RM2In compounds with M = Co, Ni; R = La, Pr, Nd, Sm and their hydrides. Coll. Abstr. X
international conference on crystal chemistry of intermetallic compounds (Ukraine, L’viv, September 17-20,
2007). 2007. L’viv. Ukraine. Р. 111.
24. Bulyk I. I., Yartys V. A., Denys R. V., Kalychak Ya. M., Harris I. R. Hydrides of the RNiIn (R = La, Ce, Nd)
intermetallic compounds: crystallographic characterisation and thermal stability. J. Alloys Compd. 1999. Vol.
284. P. 256–261. (https://doi.org/10.1016/S0925-8388(98)00953-0).
25. Yartys V. A., Denys R. V., Hauback B. C., Fjellvag H., Bulyk I. I., Riabov A. B., Kalychak Ya. M. Short
hydrogen–hydrogen separation in novel intermetallic hydrides RE3Ni3In3D4 (RE = La, Ce and Nd). J. Alloys Compd.
2002. Vol. 330–332. P. 132–140.(https://doi.org/10.1016/S0925-8388(01)01638-3).
26. Denys R. V., Riabov A. B., Yartys V. A., Hauback B. C., Brinks H. W. In situ powder neutron diffraction
study of LaNiInD1.63 with short D–D distances. J. Alloys Compd. 2003. Vol 356–357. P. 65–68. (https://doi.org/10.1016/S0925-8388(03)00101-4).
27. Vajeeston P., Ravindran P., Vidya R., Kjekshus A., Fjellvog H., Yartys V. A. Short hydrogen-hydrogen
separation in RNiInH1.333 (R = La, Ce, Nd). Phys. Rev. B. 2003. Vol. 67. P. 014101.
(https://doi.org/10.1103/PhysRevB.67.014101).
28. Jezerski A., Penc B., Szytula A. Electronic structures of LaNiIn and LaNiInHx (x = 1/3, 2/3, 1, 4/3). J.
Alloys Compd. 2005. Vol. 404–406. P. 204–207. (https://doi.org/10.1016/j.jallcom.2004.09.093).
29. Gondek L., Kozlak K., Czub J., Rusinek D., Szytula A., Hoser A. On the verge of short D–D distances in RNiIn
deuterides. Intermetallics. 2013. Vol. 34. P. 23–28. (https://doi.org/10.1016/j.intermet.2012.11.002).
30. Klein R. A., Balderas-Xicohtencalt R., Machlen Y. P., Udovic T. J., Brown C. M., Delaplane R., Cheng Y.,
Denys R.V., Ramirez–Cuesta A. J., Yartys V. A. Neutron vibrational spectroscopie evidence for short H∙∙∙H
contacts in the RNiInH1.4;1.6 (R = Ce, La). J. Alloys Compd. 2022. Vol. 894. P. 162381.
(https://doi.org/10.1016/j.jallcom.2021.162381).
31. Dzevenko M., Miliyanchuk K., Filinchuk Ya., Stelmakhovych O., Akselrud L., Havela L., Kalychak Ya. Large
hydrogen capacity in hydrides R2Ni2In-H (R = La, Ce, Pr, Nd) with new structure type. J. Alloys Compd. 2009.
Vol. 477. P. 182–187. (https://doi.org/10.1016/j.jallcom.2008.10.042).
32. Drašner A., Blazina Z. Interaction of hydrogen with LaNi4.9In0.1, LaNi4.8In0.2 and LaNi4.8 alloys and their
Nd analogues. J. Alloys Compd. 2006. Vol. 420. P. 213–217. (https://doi.org/10.1016/j.jallcom.2005.11.003).
33. Buschow K. H. J., Van Mal H. H. Phase relations and hydrogen absorption in the lanthanum–nickel system. J.
Less-Common Met. 1972. Vol. 29. P. 203–210. (https://doi.org/10.1016/0022-5088(72)90191-9)(https://doi.org/10.1016/j.jallcom.2005.11.003).
34. Ivanchenko V. G., Kobzenko G. F., Svechnikov V. N. Phase equlibria in the lanthanum–nickel system. Dopov.
Acad. Nauk Ukr. RSR, Ser. A. 1982. Vol.1. P. 80–84 (in Ukrainian).
35. McMasters O. D., Gschneidner K. A. Jr. The lanthanum–indium system/ J. Less-Common Met. 1974. Vol. 38. P.
137–148. (https://doi.org/10.1016/0022-5088(74)90057-5).
36. Yatsenko S. P., Semyannikov A. A., Shakarov H. O., Fedorova E. G. Phase diagrams of binary rare earth
metal–indium systems. J. Less–Common Met. 1983. Vol. 90. P.95–108.
(https://doi.org/10.1016/0022-5088(83)90121-2).
37. Palenzona A., Girafici S. The In–La (indium–lanthanum) system. Bull. Alloy Phase Diagrams. 1989. Vol. 10.
P.580–587. (https://doi.org/10.1007/BF02882417).
38. Singleton M. F., Nash P. The In–Ni (indium–nickel) system. Bull. Alloy Phase Diagrams. 1988. Vol. 9. P.
592–597. (https://doi.org/10.1007/BF02881962).
39. Durussel Ph., Burri G., Feschotte P. The binary system Ni–In. J. Alloys Compd. 1997. Vol. 257. P. 253–258.
(https://doi.org/10.1016/S0925-8388(97)00033-9).
40. Kraus W., Nolze G. Powder Cell For Windows. Berlin, 1999.
41. STOE WinXPOW, Version 1.2, STOE & CIE GmbH. Darmstadt, 2001.
42. Rodriguez-Carvajal J. Recent developments of the program FULLPROF. Commission on Powder Diffraction.
Newsletter. 2001. Vol. 26. P. 12–19.
43. Emsley J. The Elements: 2-nd ed. Oxford: Clarendon Press. 1991. 251 p.
How to Cite
NYCHYPORUK G., DMYTRAKH O., KALYCHAK Ya. THE SYSTEM La–Ni–In: PHASE EQUILIBRIA AND CRYSTAL STRUCTURES OF COMPOUNDS. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. LXXV. P. 28-39.