УДК 546.3-866.711.682

https://doi.org/10.37827/ntsh.chem.2024.75.028

Галина НИЧИПОРУК, Ореста ДМИТРАХ, Ярослав КАЛИЧАК

СИСТЕМА La–Ni–In: ФАЗОВІ РІВНОВАГИ ТА КРИСТАЛІЧНІ СТРУКТУРИ СПОЛУК

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: yaroslav.kalychak@lnu.edu.ua

Методами рентгенівського фазового і, частково, мікроструктурного аналізів та енергодисперсійної рентгенівської спектроскопії встановлено фазові рівноваги та побудовано ізотермічний переріз діаграми стану системи La–Ni–In у повному концентраційному інтервалі за температури 870 К (область 0–0,333 ат. часток La) та 670 К (область > 0,333 ат. часток La). У системі виявлено розчинність індію у сполуці LaNis (до 8,5 ат. %) та нікелю у сполуці La2In (до 5 ат. %) і підтверджено існування 14 тернарних сполук: LaNirIn6 (CT LaNirIn6), LaNisIn2 (CT YNisIn2), LaNisIn6 (CT LaNisIn6), LaNisIn6 (CT CeNisSn), LaNisIn2 (CT HoNi2,6Ga2,4), LaNiIn4 (CT YNiAI4), La4NirIn8 (CT Ce4NirIn8), La5Ni6In11 (CT Pr5Ni6In11), LaNi2In (CT o-La2Ni2In), La1Ni4In9 (CT Nd11Pd4In9), La12Ni6In (CT Sm12Ni6In). Методом порошку уточнено кристалічну структуру сполук o-La2Ni2In i La12Ni6In. Для сполуки зі структурою типу YNisIn2 визначено область гомогенності, яка описується складом LaNi9–8,2In2–2,8.

Keywords: індид, метод порошку, потрійна система, тернарна сполука.

Вступ

Потрійні системи рідкісноземельних металів з перехідними металами, особливо 3d-металами 7–12 груп Періодичної системи, та *p*-елементами 3–5 груп, є плідними на інтерметалічні сполуки. Ці сполуки вирізняються різноманітністю складу, складністю кристалічної структури, унікальністю фізичних властивостей. Значною мірою це стосується систем, де *p*-елементом є індій, а *d*-металом кобальт, нікель чи мідь. Ізотермічні перерізи діаграм стану систем міді побудовані практично для всіх рідкісноземельних металів [1]. У них утворюється від шести (у системі Y–Cu–In) до дев'яти (у системі Ce–Cu–In) сполук, більшість з яких зосереджена в області до 33,3 ат. % РЗМ. Попередній огляд сполук систем РЗМ–Ni–In описаний у [2]. Сьогодні побудовані ізотермічні перерізи діаграм стану систем з Y [3], Ce [4], Gd [5], Tb [6], Dy [7], Ho [8], Er [9], Tm [10], Lu [11]. На відміну від систем міді вони багатші на потрійні сполуки, які більш різноманітні за хімічним складом і кристалічною структурою. Продовжуючи систематичні дослідження взаємодії компонентів у системах РЗМ–Ni–In, представляємо діаграму фазових рівноваг

системи La-Ni-In за температури 870 К (область 0-0,333 ат. часток La) та 670 К (область > 0,333 ат. часток La).

З літературних джерел відомо про існування в системі сполук LaNi₇In₆ [1, 12], LaNi₉In₂ [1, 2, 13, 14], LaNi₃In₆ [1, 2], LaNi₅In [1, 2, 15], LaNi₃In₂ [1, 2], LaNiIn₄ [1, 2, 12], La₄Ni₇In₈ [1, 2], La₅Ni₆In₁₁ [1, 2], LaNi₂In [1, 2], LaNiIn [16], LaNi_{0,5}In_{1,5} [1, 2] (LaNi_{0,25}In_{1,75} [20]), La₂Ni₂In [1, 2, 17], La₁₁Ni₄In₉ [18, 19], La₁₂Ni₆In [1]. Для сполук LaNi₉In₂ [13], LaNi₅In [21], LaNi₂In [22, 23], LaNiIn [24–30], La₂Ni₂In [31] та твердого розчину LaNi_{5-x}In_x [32] досліджено воденьсорбційні властивості.

Для подвійних систем La–Ni [33, 34], La–In [35–37] і Ni–In [38, 39], які обмежують досліджувану потрійну, побудовано діаграми стану та досліджено кристалічні структури сполук.

Матеріали та методика експерименту

Для дослідження взаємодії компонентів у системі La–Ni–In виготовлено понад 130 подвійних і потрійних сплавів. Зразки масою близько 1 г синтезували електродуговим сплавлянням шихти з компактних металів (лантан з вмістом 0,999 мас. частки La; нікель – 0,9992 мас. частки Ni, індій – 0,9999 мас. частки In) у відповідних масових співвідношеннях в атмосфері очищеного аргону (гетер – губчастий титан). Для забезпечення гомогенізації сплави переплавляли двічі. Втрати під час плавлення не перевищували 1 мас. %, тому склад сплавів приймали таким, що дорівнює складу шихти. Одержані зразки відпалювали у вакуумованих кварцових ампулах за 870 К упродовж місяця (область 0–0,333 ат. часток La) та за 670 К (область > 0,333 ат. часток La) упродовж двох місяців з наступним загартовуванням у холодну воду без попереднього розбивання ампул. Сплави литі та відпалені стійкі до дії навколишнього середовища протягом тривалого часу, за винятком сплавів із вмістом від ~ 0,30 до ~ 0,60 ат. часток La та ~ до 0,10 ат. часток Ni, які впродовж кількох тижнів руйнувалися з утворенням аморфних фаз і кристалічного індію.

Фазовий аналіз виконували за рентгенограмами, отриманими в камерах Дебая-Шеррера (Сг К-випромінювання) та на порошковому дифрактометрі (ДРОН-2.0, Fe Ка-випромінювання) шляхом порівняння порошкограм досліджуваних сплавів із порошкограмами відомих бінарних та тернарних сполук і чистих компонентів. Теоретичні рентгеногами отримували за допомогою програм Powder Cell [40] і STOE WinXPOW [41]. Для детальнішого вивчення кристалічної структури (програма FullProf [42]) використовували масиви експериментальних даних, отриманих на дифрактометрі STOE STADI P (Си Ка₁-випромінювання). Аналіз мікроструктур поверхонь окремих зразків та кількісний і якісний аналіз проводили на сканувальному електронному мікроскопі Tescan Vega 3 LMU, оснащеному детектором Oxford Instruments SDD X-Max^{N20}.

Результати досліджень та обговорення

За результатами рентгенівського фазового та, частково, мікроструктурного і локального рентгеноспектрального аналізів (рис. 1) побудовано ізотермічний переріз діаграми стану системи La–Ni–In у повному концентраційному інтервалі за температури 870 К (область 0–0,333 ат. часток La) та 670 К (область > 0,333 ат. часток La) та 670 К (область > 0,333 ат. часток La) (рис. 2).

За умов дослідження підтверджено існування ряду бінарних сполук подвійних систем: La₃In (структурний тип (СТ) AuCu₃), La₂In (СТ Ni₂In), La₃In₅ (СТ Pu₃Pd₅),

LaIn (CT CsCl), LaIn₂ (CT KHg₂), LaIn₃ (CT AuCu₃); La₃Ni (CT Fe₃C), La₇Ni₃ (CT Th₇Fe₃), LaNi (CT TII), La₂Ni₃ (CT La₂Ni₃), LaNi₂ (CT MgCu₂), LaNi₃ (CT PuNi₃), La₂Ni₇ (CT Ce₂Ni₇), LaNi₅ (CT CaCu₅); Ni₃In (CT Mg₃Cd), Ni₂In (CT Ni₂In), ζ (Ni_xIn_{1-x}, CT NiAs), Ni₁₃In₉ (CT Ni₁₃Ga₉), NiIn (CT CoSn), Ni₂In₃ (CT Ni₂Al₃), а також 14 тернарних сполук у системі La–Ni–In, склади та кристалографічні характеристики яких наведено у табл. 1.

Рис. 1. Фотографії поверхонь мікрошліфів окремих зразків системи La–Ni–In.

Fig. 1. Scanning electron micrographs of polished samples of the La-Ni-In system.

Бінарні сполуки практично не розчиняють третього компонента, за винятком сполук LaNi₅ зі структурою типу CaCu₅ і La₂In зі структурою типу Ni₂In. Перша, за даними дослідження монокристала, розчиняє вздовж ізоконцентрати 16,7 ат. % La біля 8,5 ат. % In [14]. Заміщення атомів нікелю атомами індію відбувається в положенні 3g (1/2 0 1/2) просторової групи *P6/mmm*. У цьому випадку параметри елементарної комірки очікувано зростають від a = 0,5009; c = 0,3983 нм [34] для LaNi₅ до a = 0,5042; c = 0,4009 нм для LaNi_{4,49}In_{0,51} [14]. За даними [32] у сплавах, відпалених за 1500 К, зафіксована гранична розчинність індію при складі LaNi_{4,8}In_{0,2} і, що сплав цього складу поглинає 6,4 атома водню на формульну одиницю. Розчинність нікелю (до 5 ат. %) у сполуці La₂In вздовж ізоконцентрати 66,7 ат. % La зафіксована за результатами EDX аналізу двофазових сплавів La₅₀Ni₂₀In₃₀ та La₆₅Ni₂₅In₁₀ (див. рис. 1). Граничний склад описується формулою La₂Ni_{0,15}In₁₀, st.

Рис. 2. Ізотермічний переріз діаграми стану системи La–Ni–In за 870 К (область 0–33,3 ат. % La) та 670 К (область > 33,3 ат.% La) (нумерація сполук відповідає даним табл. 1).

Fig. 2. Isothermal section of the phase diagram of La–Ni–In system at 870 K (region 0–33,3 at. % La) and 670 K (region > 33,3 at.% La) (the numbering of compounds corresponds to the data in the table 1).

Сполуки системи La–Ni–In можна розділити на три групи: сполуки багаті на нікель – це складні багатошарові сполуки з високими значеннями координаційних чисел атомів; сполуки середньої частини концентраційного трикутника – двошарові сполуки з координаційними многогранниками у вигляді призм; сполуки багаті лантаном – складні багатошарові сполуки з порівняно низькими значеннями координаційних чисел атомів. До першої групи належать сполуки LaNi₉In₂, LaNi₇In₆, LaNi₅In. Другу групу становлять сполуки LaNi₃In₆, LaNi₃In₂, LaNi₁In₈, La₅Ni₆In₁₁, LaNi₂In, LaNi₁, LaNi_{0,5–0,25}In_{1,5–1,75}, La₂Ni₂In та La₁₁Ni₄In₉. Третя група представлена сполукою La₁₂Ni₆In.

Сполука LaNi₉In₂ зі тетрагональною структурою типу YNi₉In₂ має область гомогенності вздовж ізоконцентрати лантану 8,3 ат %, яка описується формулою LaNi_{9–8,2}In_{2–2,8}. Граничний склад з боку багатого індієм визначено за дослідженнями кристалічної структури методом монокристала [14] і підтверджено EDX аналізом двофазового сплаву La₈Ni₆₄In₂₈ (див. рис. 1). Іще однією особливістю цієї сполуки є роздвоєння положення атомів лантану за кімнатної температури та за T = 100 К. Якщо у прототипі YNi₉In₂ атоми P3M розташовані в положенні 2*a* (0 0 0), то у сполуці лантану він займає положення 2*a* (0 0 0) та 4*e* (0 0 *z*) (*z*~0,05) з коефіцієнтами

заповнення 0,26 та 0,37, відповідно [14]. Сполука LaNi₉In₂ характеризується типовою для металів електропровідністю і є парамагнетиком Паулі [13]. Наводнення сплаву призводить до утворення гідриду LaNi₉In₂H_{0,95} з вихідною структурою і дещо більшими параметрами комірки [13].

Таблиця 1

Кристалографічні характеристики сполук системи La-Ni-In

Table 1

Mo		Структурний	Просторова	Параметри комірки им			Піторо
JN <u>⊻</u>	Сполука	Структурнии	просторова	Tapa		и, нм	Jinepa-
11/11	T)1' T	ТИП	Трупа	<i>a</i>	<i>D</i>	C	Typa
Ι.	LaN17In6	LaN17In6	Ibam	0,8066	0,9248	1,2465	1, 12
2.	LaNi9In2	YNi9In2	P4/mbm	0,8339	-	0,4877	1, 2
				0,8285	-	0,4871	13
	LaNi8,2In2,8			0,83976	Т = 295 К	0,50439	14
				0,83814	T = 100 K	0,50352	14
3.	LaNi ₃ In ₆	LaNi ₃ In ₆	Pmmn	0,4388	0,7574	1,2110	1, 2
4.	LaNi5In	CeNi ₅ Sn	P6 ₃ /mmc	0,4957	—	1,9969	1, 2, 15
5.	LaNi ₃ In ₂	HoNi _{2,6} Ga _{2,4}	P6/mmm	0,9334	-	0,4356	1, 2
6.	LaNiIn ₄	YNiAl ₄	Стст	0,4484	1,6885	0,7199	1,2
				0,4482	1,6895	0,7221	12
7.	La4Ni7In8	Ce4Ni7In8	Cmmm	1,4757	2,4187	0,4398	1, 2
8.	La5Ni6In11	Pr5Ni6In11	Cmmm	1,4640	1,4674	0,4439	1, 2
9.	LaNi ₂ In	PrCo ₂ Ga	Pmma	0,5254	0,4131	0,7169	1, 2
10.	LaNiIn	ZrNiAl	<i>P</i> –62 <i>m</i>	0,7613	_	0,4035	16
				0,7607	_	0,4059	18
11.	LaNi0,5In1,5	AlB ₂	P6/mmm	0,4837	_	0,4036	1, 2
	LaNi0,25In1,75			0,4850		0,3963	20
12.	La ₂ Ni ₂ In	Mo ₂ FeB ₂	P4/mbm	0,7611	_	0,3918	1, 2
	o-La2Ni2In	o-La2Ni2In	Pbam	0,75840	1,54891	0,39151	17
			Pbam	0,7588(1)	1,5499(3)	0,3915(1)	*
13.	La11Ni4In9	Nd11Pd4In9	Cmmm	1,50173	2,2515	0,38381	18
				1,50061	2,25039	0,38347	19
14.	La ₁₂ Ni ₆ In	Sm12Ni6In	Im-3	1,0209	_	_	1, 2
				1,0254(4)			*

Crystallographic characteristics of the compounds in the La-Ni-In system

* Результати цієї праці.

Сполука LaNi₇In₆ має власний тип структури, який є варіантом ромбічної деформації кубічної структури типу NaZn_{13.} Структура цієї сполуки частково невпорядкована, зокрема у положенні 8*j* є статистична суміш атомів Ni/In у співвідношенні 0,180/0,820, що приводить до складу LaNi_{7,36}In_{5,64}. Це, а також незначні зміни параметрів елементарної комірки цієї фази у сплавах близьких до стехіометричного складу, свідчить про незначну (в межах 2–3 ат. %) область гомогенності [12].

Сполука LaNi₅In має гексагональну структуру типу CeNi₅Sn [15]. Результатом її гідрування за кімнатної температури і тиску водню до 10 МРа є утворення гідриду

LaNi₅InH_{1,8} зі структурою металічної матриці і незначним збільшенням параметрів комірки [21].

Для цієї групи сполук координаційні числа атомів лантану перебувають у межах 18–20, атомів нікелю – 10–12 (ікосаедр і його похідні) та атомів індію – 13–15.

Для двошарових структур (друга група сполук) координаційними многогранниками атомів лантану зазвичай є гексагональні та пентагональні призми (КЧ = 12-20), атомів індію – тетрагональні призми (КЧ = 12-14), а атомів нікелю – многогранники типу атомів Cu у структурі CaCu₅ або частіше тригональні призми (КЧ = 9-12). У всіх випадках призми екваторіально центровані додатковими атомами. Для атомів лантану й, у деяких випадках, атомів індію центрованими є також основи призм. У структурі сполуки LaNiIn4 можна виокремити призми [InIn₈], аналогічні до структури чистого індію. Зі зміною стехіометрії сполук змінюється склад атомних шарів. За низьких концентрацій лантану в обох шарах є усі сорти атомів (La + Ni + In). Сюди належать сполуки LaNi₃In₆, LaNi₃In₂, LaNiIn₄, La4Ni7In8, La5Ni6In11. Зі збільшенням вмісту лантану, зокрема в сполуках LaNi2In та LaNiIn, в одному шарі є атоми La та Ni, а в іншому Ni та In. При подальшому збільшенні вмісту лантану (сполуки LaNi_{0.5-0.25}In_{1.5-1,75}, La₂Ni₂In і La₁₁Ni₄In₉) один шар складається виключно з атомів La, а інший – із атомів Ni та In. Варто зауважити, що зі збільшенням вмісту La зменшується значення найкоротшого періоду від 0,4484 нм для LaNiIn₄ до 0,3838 нм для La₁₁Ni₄In₉

Сполука зі структурою типу AlB₂, подібно до ізоструктурних сполук у системах Ce–Ni–In і La–Cu–In [1], має область гомогенності вздовж ізоконцентрати рідкісноземельного металу. За даними [1] і [20] вона перебуває в межах від 50 до 58 ат. % In, а її склад описується формулою LaNi_{0,5-0,25}In_{1,5-1,75}. Як і в сполуці CeNi_{0,3-0,2}In_{1,7-1,8} зі збільшенням вмісту індію в межах області гомогенності значення параметра комірки *а* зростає, а параметра *с* – зменшується. У цьому випадку для сполуки LaCu_{0,5-0,2}In_{1,5-1,8} значення обох періодів зростають [1].

Сполука La₂Ni₂In існує у вигляді двох модифікацій. За даними диференційного термічного аналізу до температури 820 К існує тетрагональна модифікація із структурою типу Mo₂FeB₂, а вище – *o*-ромбічна модифікація (рис. 3,*a*) із власним типом структури [17]. Ромбічна модифікація також двошарова і близько споріднена до тетрагональної. Метрично вони пов'язані співвідношеннями: $a_o \sim a_t$; $b_o \sim 2a_t$; $c_o \sim c_t$. Оскільки структуру *o*-ромбічної модифікації сполуки La₂Ni₂In визначено за моно-кристальними даними, то ми виконали уточнення її кристалічної структури методом порошку (програма FullProf) за масивом даних, отриманих на дифрактометрі STOE STADI P (рис. 3,*a*; табл. 2), використавши монокристальні дані [17] як модель.

Гідрогенсорбційні властивості вивчено для сполук LaNi₂In, LaNiIn i La₂Ni₂In. Сполука LaNi₂In поглинає до 3,5 атомів водню на формульну одиницю без зміни типу вихідної структури [22, 23]. Очевидно, найбільше досліджень [24–30] присвячено гідрогенсорбційним властивостям сполуки LaNiIn, яка без зміни структури поглинає до 2 атомів водню на формульну одиницю [24]. Гідрид LaNiInH₂ розкладається у дві стадії при нагріванні до 800 К. На прикладі сполуки LaNiInH₂ (разом із сполуками церію та неодиму) вперше було виявлено аномально коротку відстань між атомами водню в ~1,6 Å всупереч емпіричному правилу 2 Å [25]. Електронна структура цього гідриду досліджена у [28]. Тетрагональна фаза La₂Ni₂In поглинає водень із зміною структури до ромбічної (просторова група

Рис. 3. Експериментальна (•), розрахункова (–) та різницева (знизу) дифрактограми зразків:

 a – La40Ni40In20; *δ* – La65Ni25In10 (*l* – La12Ni6In; *2* – La2Ni0,15In0,85)

 (STOE STADI P, Cu Кα1-випромінювання).

 Fig. 3. Experimental (•), calculated (–) and difference (bottom) X–ray patterns of the alloys:

 a – La40Ni40In20; *b* – La65Ni25In10 (*l* – La12Ni6In; *2* – La2Ni0.15In0.85)

 (STOE STADI P, Cu Kα1-випромінювання).

Як уже згадувалось вище, третя група представлена сполукою La₁₂Ni₆In із кубічною структурою типу Sm₁₂Ni₆In. Оскільки для цієї сполуки визначено лише параметри елементарної комірки, то ми виконали уточнення її кристалічної структури методом порошку (дифрактометр STOE STADI P, Cu K α_1 -випромінювання, програма FullProf) (рис. 3, δ).

Деталі експерименту та результати уточнення кристалічної структури сполуки La₁₂Ni₆In наведені у табл. 2. Найкоротші міжатомні відстані у цій структурі: La–La 0,3787; La–Ni 0,2831; La–In 0,3669; Ni–Ni 0,2418 нм. Особливістю структури є ікосаедрична координація атомів індію, що рідко трапляється у потрійних індидах. Іще одна особливість – наявність пар Ni–Ni на відстані 0,2418 нм (у чистому нікелі – 0,2592 нм [43]), що є у здвоєних основами тетрагональних антипризмах [1].

Таблиця 2

Деталі експерименту та результати уточнення кристалічної структури сполук La2Ni2In і La12Ni6In

Table 2

Experimental details and results of crystal structure refinement of La ₂ N ₁ ₂ In and La ₁₂ N ₁₆ In compound	Experimental details and	l results of crystal structu	re refinement of L	La2Ni2In and	La ₁₂ Ni ₆ In compounds
---	--------------------------	------------------------------	--------------------	--------------	---

•		· •		
Склад зразка	$La_{40}Ni_{40}In_{20}$	$La_{65}Ni_{25}In_{10}^{1}$		
Склад сполуки	La ₂ Ni ₂ In	La ₁₂ Ni ₆ In		
Розрахована густина <i>D</i> _x , г/см ³	7,358	6,573		
Структурний тип	o-La ₂ Ni ₂ In	Sm ₁₂ Ni ₆ In		
Просторова група	<i>Pbam</i> , № 55	<i>Im</i> −3, № 204		
Символ Пірсона	oP20	<i>cI</i> 38		
Дифрактометр	STOE STA	ADI P		
Випромінювання, Å	1,54060 (Cu	ι Και)		
Межі 2 <i>θ</i> , °	6,00–105,54	5,00-110,585		
Крок, час знімання	0,015°, 300 c	0,015°, 300 c		
Параметри комірки, нм	a = 0,7588(1); b = 1,5499(3);	a = 1,0254(4)		
	c = 0,3915(1)			
Об'єм комірки, нм ³	0,4604(1)	1,0782(6)		
Параметри атомів:	La1 4h 0,1048(5) 0,2165(3) 1/2	La 24g 0 0,1860(4) 0,3057(4)		
	La2 4h 0,2516(7) 0,4643(3) 1/2	Ni 12e 0,1179(8) 0 1/2		
	Ni1 4g 0,0520(13) 0,0756(6) 0	In 2 <i>a</i> 0 0 0		
	Ni2 4g 0,3002(14) 0,3192(6) 0			
	In 4g 0,4253(7) 0,1286(3) 0			
B_{Overall} , Å ²	0,77(6)	1,25(7)		
Корекція на абсорбцію, $\mu_{ m Reff}$	2,4	1,3		
Параметри профілю U; V; W	0,057(2); 0,0; 0,014(1)	0,729(9); 0,0; 0,006(2)		
Параметр; напрям текстури G	—	0,05(1); [100]		
$R_{\rm p}; R_{\rm wp}, \%$	7,41; 9,58	4,58; 5,82		
$R_{ m Bragg}, R_{ m F}, \%$	8,99; 8,69	6,41; 4,89		
1				

¹Додаткова фаза La₂Ni_{0,15}In_{0,85}) (CT Ni₂In; ПГ *P*6₃/*mmc*; a = 0,5655(3), c = 0,7102(4) нм; $R_{\text{Bragg}} = 8,85\%$; $R_{\text{F}} = 6,02\%$; $\omega = 7,8(4)\%$).

Висновки

Побудовано ізотермічний переріз діаграми стану системи La–Ni–In у повному концентраційному інтервалі за температури 870 К (область 0–0,333 ат. часток La) та 670 К (область > 0,333 ат. часток La). В системі виявлено розчинність індію у

сполуці LaNi₅ (до 8,5 ат. %) та нікелю у сполуці La₂In (до 5 ат. %) і підтверджено існування 14 тернарних сполук: LaNi₇In₆, LaNi₉In₂, LaNi₃In₆, LaNi₅In, LaNi₃In₂, LaNiIn₄, La₄Ni₇In₈, La₅Ni₆In₁₁, LaNi₂In, LaNiIn, LaNi_{0,5-0,25}In_{1,5-1,75}, La₂Ni₂In, La₁₁Ni₄In₉, La₁₂Ni₆In. Методом порошку уточнено кристалічну структуру ромбічної модифікації сполуки La₂Ni₂In та La₁₂Ni₆In. Для сполуки зі структурою типу YNi₉In₂ визначено область гомогенності, яка описується формулою LaNi_{9-8,2}In_{2-2,8}.

Подяка

Автори вдячні провідному науковому співробітнику П. Ю. Демченку за допомогу в отриманні експериментальних масивів дифрактограм окремих сплавів та науковому співробітнику А. В. Зелінському за допомогу у дослідженні мікроструктур окремих зразків.

Г. Н. та Я. К. вдячні за фінансову підтримку фонду Simons Foundation (Award ID: 1290588).

ЛІТЕРАТУРА

- Kalychak Ya. M., Zaremba V. I., Pöttgen R., Lukachuk M., Hoffmann R.-D. Rare Earth– Transition Metal–Indides. In: K. A. Gschneidner, Jr., J.-C. Bünzli, V. K. Pecharsky (Eds.). Handbook on the Physics and Chemistry of Rare Earths. Elsevier, Amsterdam. 2005. Vol. 34. P. 1–133. https://doi.org/10.1016/S0168-1273(04)34001-8.
- Kalychak Ya. Peculiarities of the composition and structure of the compounds of the rareearth–Ni–In system. J. Alloys Compd. 1997. Vol. 262–263. P. 341–345. https://doi.org/ 10.1016/S0925-8388(97)00402-7.
- 3. Zaremba V., Dzevenko M., Nychyporuk G., Kalychak Ya. Phase equilibrium in the Y-Ni-In systhem at 870 K. Visn. Lviv University, Ser. Chem. 2021. 62. P. 18–27 (in Ukrainian). https://doi.org/10.30970/vch.6201.018.
- 4. *Kalychak Ya.* The component interaction in Ce–Ni–In system. Ukr. Chem. Jorn. 1998. Vol. 64(7). P. 15–20 (in Ukrainian).
- Zaremba V., Dzevenko M., Pöttgen R., Kalychak Ya. Phase equilibrium in the Gd–Ni–In system at T = 870 K. Z. Naturforsch. B. 2019. Vol. 74(7–8). P. 613–618. https://doi.org/ 10.1515/znb-2019-0083.
- Dzevenko M., Tyvanchuk Yu., Demidova Ch., Lukachuk M., Kalychak Ya. Phase equilibria in Tb–Ni–In system at 870 K. Visnyk Lviv Univ. Ser. Chem. 2014. Iss. 55(1). P. 21–28 (in Ukrainian).
- Tyvanchuk Yu. B., Zaremba V. I., Akselrud L. G., Szytula A., Kalychak Ya. M. The Dy–Ni–In system at 870 K: isothermal section, solid solutions, crystal structures. J. Alloys Compd. 2017. Vol. 704. P. 717–723. https://doi.org/10.1016/j.jallcom.2017.02.023.
- Zaremba V., Dzevenko M., Nychyporuk G., Maletska Yu., Kalychak Ya. The system Ho–Ni–In at 870 K. Visnyk Lviv Univ. Ser. Chem. 2022. Iss. 63. P. 16–28 (in Ukrainian). https://doi.org/10.30970/vch.6301.016.
- Dzevenko M., Tyvanchuk Yu., Bratash L., Zaremba V., Havela L., Kalychak Ya. Ternary system Er–Ni–In at T = 870 K. J. Solid State Chem. 2011. Vol. 184(10). P. 2707–2712. https://doi.org/10.1016/j.jssc.2011.08.006.
- Tyvanchuk Yu. B., Lukachuk M., Pöttgen R., Szytula A., Kalychak Ya. M. The ternary system Tm–Ni–In at 870 K. Z. Naturforsch. B. 2015. Vol. 70. P. 665–670. https://doi.org/10.1515/ znb-2015-0075.

- Zaremba V., Nychyporuk G., Dzevenko M., Kalychak Ya. Ternary system Lu-Ni-In at T = 870 K. Visnyk Lviv Univ. Ser. Chem. 2023. Iss. 64. P. 14–25 (in Ukrainian). https://doi.org/ 10.30970/vch.6401.014.
- Kalychak Ya. M., Zaremba V.I., Galadzhun Ya.V., Miliyanchuk K.Yu., Hoffmann R.-D., Pöttgen R. New ¹[Ni7] cluster in LaNi7In⁶ and distorted bcc indium cubes in LaNiIn4. Chem. Eur. J. 2001. Vol. 7. P. 5343–5349. https://doi.org/10.1002/1521-3765(20011217)7: 24<5343::AID-CHEM5343>3.0.CO;2-%23.
- Bigun I., Dzevenko M., Havela L., Kalychak Ya. RENi9In2 (RE = Rare-Earths Metal): Crystal Chemistry, Hydrogen Absorption, and Magnetic properties. Eur. J. Inorg. Chem. 2014. Vol. 16. P. 2631–2642. https://doi.org/10.1002/ejic.201400058.
- 14. Kalychak Ya., Dzevenko M., Babizhetskyy V., Daszkiewicz M., Gulay L. Single-crystal structure determination of LaNi_{5-x}In_x and LaNi_{9-x}In_{2+x}. Z. Naturforsch. 2020. Vol. 75b. P. 553–557. https://doi.org/10.1515/znb-2020-0020.
- Pustovoychenko M., Pavlyk V., Kalychak Ya. Synthesis and crystal structure of LaNisIn and Sm₂Ni_{2-x}In x = 0.20. Chem. Met. Alloys. 2011. Vol. 4. P. 113–118. https://doi.org/10.30970/ cma4.0176.
- 16. *Ferro R., Marazza R., Rambaldi G.* Equiatomic ternary phases in the alloys of the rare earths with indium and nickel or palladium. Z. Metallkunde. 1974. Bd. 65. S. 37–39. https://doi.org/10.1515/ijmr-1974-650106.
- 17. Pustovoychenko M., Svitlyk V., Kalychak Ya. Orthorombic La₂Ni₂In form a new intergrowth CsCl- and AlB₂-type slabs. Intermetallics. 2012. Vol. 24. P. 30–32. https://doi.org/10.1016/j.intermet.2012.01.007.
- Pustovoychenko M., Tyvanchuk Yu., Hayduk I., Kalychak Ya. Crystal structure of the RE₁₁Ni₄In₉ compounds (RE = La, Ce, Pr, Nd, Sm, Gd, Tb and Y). Intermetallics. 2010. Vol. 18. P. 929–932. https://doi.org/10.1016/j.intermet.2010.01.003.
- Provino A., Gschneidner K. A., Jr., Dhar S. K., Ferdeghini C., Mudryk Y., Manfrinetti P., Paudyal D., Pecharsky V. K. The nano-microfibrous R₁₁Ni₄In₉ intermetallics: New compounds and exstraordinary anisotropy in Tb₁₁Ni₄In₉ and Dy₁₁Ni₄In₉. Acta Materialia. 2015. Vol. 91. P. 128–140. https://doi.org/10.1016/j.actamat.2015.03.003.
- Sung H. H., Wu H. H., Syu K. J., Lee W. H., Chen Y. Y. A new Kondo antiferromagnet Ce(Ni_{0.25}In_{1.75}). J. Phys.: Condens. Matter. 2009. Vol. 21. P. 176004 (4 PP). https://doi.org/10.1088/0953-8984/21/17/176004.
- Bulyk I. I. Interaction of the RNi₅In (R = La, Ce and Nd) compounds with hydrogen. Int. J. Hydrogen Energy. 1999. Vol. 24. P. 927–932. https://doi.org/10.1016/S0360-3199(98)00169-4.
- Fruchart D., Bouondina M., Kalychak Ya. M. The new hydrogen compounds RNi₂InH_x (R = La, Pr, Nd). Coll. Abstr. VII international conference on crystal chemistry of intermetallic compounds (Ukraine, L'viv, September 22-25, 1999). 1999. L'viv. Ukraine. P. B4.
- 23. Fruchart D., Bouondina M., Gignoux D., Kalychak Ya. M., Galadzhun Ya. V. Synthesis, crystallographic characteristics of RM₂In compounds with M = Co, Ni; R = La, Pr, Nd, Sm and their hydrides. Coll. Abstr. X international conference on crystal chemistry of intermetallic compounds (Ukraine, L'viv, September 17-20, 2007). 2007. L'viv. Ukraine. P. 111.
- Bulyk I. I., Yartys V. A., Denys R. V., Kalychak Ya. M., Harris I. R. Hydrides of the RNiIn (R = La, Ce, Nd) intermetallic compounds: crystallographic characterisation and thermal stability. J. Alloys Compd. 1999. Vol. 284. P. 256–261. https://doi.org/10.1016/S0925-8388(98)00953-0.
- 25. Yartys V. A., Denys R. V., Hauback B. C., Fjellvag H., Bulyk I. I., Riabov A. B., Kalychak Ya. M. Short hydrogen–hydrogen separation in novel intermetallic hydrides RE₃Ni₃In₃D₄ (RE = La,

Ce and Nd). J. Alloys Compd. 2002. Vol. 330–332. P. 132–140. https://doi.org/10.1016/S0925-8388(01)01638-3.

- Denys R. V., Riabov A. B., Yartys V. A., Hauback B. C., Brinks H. W. In situ powder neutron diffraction study of LaNiInD_{1.63} with short D–D distances. J. Alloys Compd. 2003. Vol 356– 357. P. 65–68. https://doi.org/10.1016/S0925-8388(03)00101-4.
- Vajeeston P., Ravindran P., Vidya R., Kjekshus A., Fjellvog H., Yartys V. A. Short hydrogenhydrogen separation in RNiInH_{1.333} (R = La, Ce, Nd). Phys. Rev. B. 2003. Vol. 67. P. 014101. https://doi.org/10.1103/PhysRevB.67.014101.
- Jezerski A., Penc B., Szytula A. Electronic structures of LaNiIn and LaNiInH_x (x = 1/3, 2/3, 1, 4/3). J. Alloys Compd. 2005. Vol. 404–406. P. 204–207. https://doi.org/10.1016/j.jallcom.2004.09.093.
- Gondek L., Kozlak K., Czub J., Rusinek D., Szytula A., Hoser A. On the verge of short D–D distances in RNiIn deuterides. Intermetallics. 2013. Vol. 34. P. 23–28. https://doi.org/ 10.1016/j.intermet.2012.11.002.
- Klein R. A., Balderas-Xicohtencalt R., Machlen Y. P., Udovic T. J., Brown C. M., Delaplane R., Cheng Y., Denys R.V., Ramirez-Cuesta A. J., Yartys V. A. Neutron vibrational spectroscopie evidence for short H...H contacts in the RNiInH_{1.4;1.6} (R = Ce, La). J. Alloys Compd. 2022. Vol. 894. P. 162381. https://doi.org/10.1016/j.jallcom.2021.162381.
- Dzevenko M., Miliyanchuk K., Filinchuk Ya., Stelmakhovych O., Akselrud L., Havela L., Kalychak Ya. Large hydrogen capacity in hydrides R₂Ni₂In-H (R = La, Ce, Pr, Nd) with new structure type. J. Alloys Compd. 2009. Vol. 477. P. 182–187. https://doi.org/10.1016/ j.jallcom.2008.10.042.
- 32. Drašner A., Blazina Z. Interaction of hydrogen with LaNi4.9In0.1, LaNi4.8In0.2 and LaNi4.8 alloys and their Nd analogues. J. Alloys Compd. 2006. Vol. 420. P. 213–217. https://doi.org/10.1016/j.jallcom.2005.11.003.
- Buschow K. H. J., Van Mal H. H. Phase relations and hydrogen absorption in the lanthanumnickel system. J. Less-Common Met. 1972. Vol. 29. P. 203–210. https://doi.org/10.1016/ 0022-5088(72)90191-9.
- 34. *Ivanchenko V. G., Kobzenko G. F., Svechnikov V. N.* Phase equibria in the lanthanum–nickel system. Dopov. Acad. Nauk Ukr. RSR, Ser. A. 1982. Vol.1. P. 80–84 (in Ukrainian).
- McMasters O. D., Gschneidner K. A. Jr. The lanthanum-indium system. J. Less-Common Met. 1974. Vol. 38. P. 137–148. https://doi.org/10.1016/0022-5088(74)90057-5.
- Yatsenko S. P., Semyannikov A. A., Shakarov H. O., Fedorova E. G. Phase diagrams of binary rare earth metal-indium systems. J. Less-Common Met. 1983. Vol. 90. P.95–108. https://doi.org/10.1016/0022-5088(83)90121-2.
- 37. Palenzona A., Girafici S. The In-La (indium-lanthanum) system. Bull. Alloy Phase Diagrams. 1989. Vol. 10. P.580–587. https://doi.org/10.1007/BF02882417.
- Singleton M. F., Nash P. The In–Ni (indium–nickel) system. Bull. Alloy Phase Diagrams. 1988. Vol. 9. P. 592–597. https://doi.org/10.1007/BF02881962.
- Durussel Ph., Burri G., Feschotte P. The binary system Ni–In. J. Alloys Compd. 1997. Vol. 257. P. 253–258. https://doi.org/10.1016/S0925-8388(97)00033-9.
- 40. Kraus W., Nolze G. Powder Cell For Windows. Berlin, 1999.
- 41. STOE WinXPOW, Version 1.2, STOE & CIE GmbH. Darmstadt, 2001.
- 42. *Rodriguez-Carvajal J.* Recent developments of the program FULLPROF. Commission on Powder Diffraction. Newsletter. 2001. Vol. 26. P. 12–19.
- 43. Emsley J. The Elements: 2-nd ed. Oxford: Clarendon Press. 1991. 251 p.

SUMMARY

Galyna NYCHYPORUK, Oresta DMYTRAKH, Yaroslav KALYCHAK

THE SYSTEM La-Ni-In: PHASE EQUILIBRIA AND CRYSTAL STRUCTURES OF COMPOUNDS

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: yaroslav.kalychak@lnu.edu.ua

Interaction between the components in the La–Ni–In system was investigated by X-ray powder diffraction and, partially, scanning electron microscopy with energy-dispersive X-ray spectroscopy. Isothermal section of the phase diagram was constructed in full concentration range at 870 K (0–0.333 at. part La) and 670 K (> 0.333 at. part La).

The samples were synthesized in an arc-furnace on a water-cooled Cu-plate under an argon atmosphere and annealed in silica tubes at 870 K for one month (range 0–0.333 at. part. La) and at 670 K (range > 0.333 at. part. La) for two months. The phase analysis was performed by X-ray powder diffraction method. Microstructures of polished samples and quantitative and qualitative analysis were carried out on a Tescan Vega 3 LMU scanning electron microscope equipped with an Oxford Instruments SDD X-Max^{N20} detector.

Fourteen ternary compounds, namely LaNi₇In₆ (LaNi₇In₆-type structure), LaNi₉In₂ (YNi₉In₂-type structure), LaNi₃In₆ (LaNi₃In₆-type structure), LaNi₃In₆ (LaNi₃In₆-type structure), LaNi₃In₆ (LaNi₃In₆-type structure), LaNi₃In₆ (LaNi₃In₆-type structure), La₄Ni₇In₈ (Ce₄Ni₇In₈-type structure), La₅Ni₆In₁₁ (Pr₅Ni₆In₁₁-type structure), LaNi₁In (Pr_{CO₂Ga-type structure), La₄Ni₇In₈ (Ce₄Ni₇In₈-type structure), LaNi₆In₁₁ (Pr₅Ni₆In₁₁-type structure), LaNi₂In (Pr_{CO₂Ga-type structure), La₄Ni₁In (ZrNiAl-type structure), LaNi_{10,5-0.25}In_{1.5-1.75} (AlB₂-type structure), La₂Ni₂In (Mo₂FeB₂-type structure) an *o*-La₂Ni₂In-type structure), La₁₁Ni₄In₉ (Nd₁₁Pd₄In₅-type structure), La₁₂Ni₆In (Sm₁₂Ni₆In-type structure) exist in the La–Ni–In system at the temperature of investigation. The crystal structure of *o*-La₂Ni₂In and La₁₂Ni₆In compounds was refined using powder data (STOE STADI P, Cu Ka₁-radiation). The substitution of Ni for In was observed for compounds with AlB₂-and YNi₆In₂-types structure and its composition can be described by the formulas LaNi_{0.5-0.25}In_{1.5-1.75} and LaNi_{9-8.2}In_{2-2.8} respectively. Binary compound LaNi₅ dissolves up to 8.5 at. % of In and La₂In – up to 5 at. % of Ni.}}

Compounds of the La–Ni–In system can be divided into three groups: nickel-rich compounds are complex multi-layered with high values of coordination numbers of atoms; compounds of the middle part of the concentration triangle – two-layered compounds with coordination polyhedra in the form of prisms; compounds rich in lanthanum are complex multi-layered compounds with relatively low values of coordination numbers of atoms.

Key words: indide, powder data, ternary system, ternary compound.

Стаття надійшла: 23.05.2024. Після доопрацювання: 25.06.2024. Прийнята до друку: 04.10.2024.