Dmytro SHEVCHENKO1, Yuriy HORAK2, Mykola OBUSHAK2, Nadiia TISCHENKO3, Diana PYSHNA1, Iryna SOBECHKO1
1Lviv Polytechnic National University, St. George's Square ¾, 79013 Lviv, Ukraine e-mail: dmytro.s.shevchenko@lpnu.ua
2Ivan Franko National University of L’viv, Kyryla & Mefodiya Str., 6, L’viv, 79005, Ukraine
3Frantsevich Institute for Problems of Materials Science NASU Krzhizhanovskoho St., 3, 03142 Kyiv, Ukraine
DOI: https://doi.org/10.37827/ntsh.chem.2024.75.090
EXPERIMENTAL STUDIES OF THERMODYNAMIC PROPERTIES OF 3-(5-PHENYLPYRROL-2-YL)-PROPANOIC ACID
For the first time, an experimental determination of the main (basic) thermodynamic properties of 3-(5-phenylpyrrol-2-yl)-propanoic acid was carried out using differential thermal and thermogravimetric methods of analysis and combustion bomb calorimetry. The values of the enthalpy of sublimation at 298 K and the enthalpy of formation in the gaseous state were calculated using the values of the enthalpies of vaporization and fusion, which were recalculated to 298 K, and the enthalpy of formation in the condensed state. The applicability of the Domalsky additive method for calculating the enthalpies of formation in the condensed and gaseous states is shown. Thermodynamic parameters will be crucial in the development of technological processes for the synthesis, purification, use, storage and transportation of 3-(5-phenylpyrrol-2-yl)-propanoic acid, as this compound exhibit biological activity, evidenced by the preliminary assessment of the molecule structure using the web-based program SuperPred, and will have potential use in the production of medicines.
Keywords: enthalpy of formation; enthalpy of combustion; enthalpy of vaporization; enthalpy of fusion; enthalpy of sublimation.
References:
-
1. Amin A., Qadir T., Sharma P. K., Jeelani I., Abe H. A Review on the Medicinal and Industrial Applications of
N-Containing Heterocycles. The Open Med. Chem. J. 2022. Vol. 16. P.1–27.
(https://doi.org/10.2174/18741045-v16-e2209010).
2. Hunjan M. K., Panday S., Gupta A., Bhaumik J., Das P., Laha J. K. Recent Advances in Functionalization of
Pyrroles and their Translational Potential. The Chem. Rec. 2021. Vol. 21. P. 715–780.
(https://doi.org/10.1002/tcr.202100010).
3. Brothers P. J., Senge M. O. An Introduction to Porphyrins for the Twenty‐First Century. In: Fundamentals of
Porphyrin Chemistry: A 21st Century Approach. 2022. P. 1–8. (https://doi.org/10.1002/9781119129301.ch1).
4. Masci D., Hind C., Islam M. K., Toscani A., Clifford M., Coluccia, A., Conforti I., Touitou M., Memdouh S., Wei
X., La Regina G., Silvestri R., Sutton J., Castagnolo D. Switching on the activity of 1,5-diaryl-pyrrole
derivatives against drug-resistant ESKAPE bacteria: Structure-activity relationships and mode of action studies.
Eur. J. Med. Chem. 2019. Vol. 178. P. 500–514. (https://doi.org/10.1016/j.ejmech.2019.05.087).
5. Ivan B.-C., Barbuceanu S.-F., Hotnog C. M., Anghel A. I., Ancuceanu R. V., Mihaila M. A., Brasoveanu L. I.,
Shova S., Draghici C., Olaru O. T., Nitulescu G. M., Dinu M., Dumitrascu F. New pyrrole derivatives as promising
biological agents: Design, synthesis, characterization, in silico, and cytotoxicity evaluation. Int. J. Mol. Sci.
2022. Vol. 23. P. 8854. (https://doi.org/10.3390/ijms23168854).
6. Vitaku E., Smith D. T., Njardarson J. T. Analysis of the structural diversity, substitution patterns, and
frequency of nitrogen heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014. Vol. 57. P.
10257–10274. (https://doi.org/10.1021/jm501100b).
7. Li Petri G., Spanò V., Spatola R., Holl R., Raimondi M. V., Barraja P., Montalbano A. Bioactive pyrrole-based
compounds with target selectivity. Eur. J. Med. Chem. 2020. Vol. 208. P. 112783.
(https://doi.org/10.1016/j.ejmech.2020.112783).
8. Walker, A. B.; Clardy, J. A. Machine Learning Bioinformatics Method to Predict Biological Activity from
Biosynthetic Gene Clusters. J. Chem. Inf. Model. 2021. Vol. 61. P. 2560–2571.
(https://doi.org/10.1021/acs.jcim.0c01304).
9. Klachko O., Matiychuk V., Sobechko I., Serheyev V., Tishchenko N. Thermodynamic properties of
6-methyl-2-oxo-4-aryl-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid esters. Chem. Chem. Technol. 2020. Vol. 14.
P. 277–283. (https://doi.org/10.23939/chcht14.03.277).
10. Kostiuk R. R., Horak Y., Velychkivska N., Sobechko I. B., Pyshna D. B., Dibrivnyi V. Thermodynamic properties
of 2-methyl-5-phenylfuran-3-carboxylic. Chem. Technol. Applic. Sub. 2023. Vol. 6. P. 8–14.
(https://doi.org/10.23939/ctas2023.01.008).
11. Sobechko B., Dibrivnyi V. M., Gorak Yu. I. Enthalpy of formation and combustion of
5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state. Chem.
Technol. Applic. Sub. 2022. Vol. 5 P. 30–36. (https://doi.org/10.23939/ctas2022.02.030).
12. Rossini F. D. Experimental Thermochemistry. Interscience Publishers. N. Y.; London, 1956. Vol. 2. 326 p.
13. Nickel J., Gohlke B.-O., Erehman J., Banerjee P., Rong W. W., Goede A., Dunkel M., Preissner R. SuperPred:
Update on drug classification and target prediction. Nucleic Acids Res. 2014. Vol. 42.
(https://doi.org/10.1093/nar/gku477).
14. Zimenkovskyi B.S., Muzychenko V.A., Nizhenkovska I.V., Raw G.O. Biological and bioorganic chemistry: textbook:
in 2 books. Book 1. Bioorganic chemistry. 3rd edition. K.: VSV "Medicine". 2022. 272 p. (in Ukrainian).
15. Codata key values for thermodynamics [Electronic resource] – Access mode:
(http://www.codata.info/resources/databases/key1.html).
16. Sobechko I. Сalculation method of heat capacity change during organic compounds vaporization and sublimation.
Chem. Chem. Technol. 2016. Vol. 10. Р. 27–33. (https://doi.org/10.23939/chcht10.01.027).
17. Benson S. W. III-bond energies. J. Chem. Educ. 1965. Vol. 42. P. 502. (https://doi.org/10.1021/ed042p502).
18. Cohen N. Revised Group additivity values for enthalpies of formation (at 298 K) of carbon–hydrogen and
carbon–hydrogen–oxygen compounds. J. Phys. Chem. Ref. Data. 1996. Vol. 25. P. 1411–1481.
(https://doi.org/10.1063/1.555988).
19. Domalski, E. S., Hearing, E. D. Estimation of the thermodynamic properties of C-H-N-O-S-halogen compounds at
298.15 K. J. Phys. Chem. Ref. Data. 1993. Vol. 22. P. 805–1159. (https://doi.org/10.1063/1.555927).
How to Cite
SHEVCHENKO D., HORAK Yu., OBUSHAK M., TISCHENKO N., PYSHNA D., SOBECHKO I. EXPERIMENTAL STUDIES OF THERMODYNAMIC PROPERTIES OF 3-(5-PHENYLPYRROL-2-YL)-PROPANOIC ACID Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. LXXV. P. 90-99.