Olena MAKIDO, Galyna KHOVANETS’, Oksana KHAVUNKO
Department of Physical Chemistry of Fossil Fuels of the Institute of Physical-Organic Chemistry and Coal Chemistry named after L.M. Lytvynenko NAS of Ukraine, Naukova Str., 3а, 79060 Lviv, Ukraine e-mail: khovanets_galyna@ukr.net
DOI: https://doi.org/10.37827/ntsh.chem.2021.66.090
SYNTHESIS OF CATALYSTS BASED ON MAGNETIC PARTICLES CoFe2O4
The development of effective catalysts for various industrial production processes, to protect the environment from hazardous pollutants, in particular, fine treatment of wastewater from organic pollutants by the Fenton method is a very relevant modern direction of catalysis – «green chemistry». Therefore, we have obtained magnetic-sensitive core-shell catalysts based on stabilized SiO2 particles of cobalt ferrite with active centers of copper oxide deposited on the surface by the sol-gel method. Such porous catalysts with magnetic properties have a number of advantages: good adsorption capacity, the possibility of magnetic separation and recirculation at room temperature and thermal stability. Multistage technology for manufacturing of CoFe2O4/SiO2/CuO composite is proposed. Synthesis of the obtained nanostructured magnetically sensitive catalysts CoFe2O4/SiO2/CuO occurs in three stages: 1) synthesis of CoFe2O4 particles, which form a magnetically sensitive core; 2) applying a stabilizing layer of silica by sol-gel method; 3) the formation of an outer layer of CuO, which exhibits catalytic properties. Carried out qualitative and quantitative microanalysis of the obtained composite showed that the particles of cobalt ferrite have a finely dispersed structure with sizes up to 100 μm. Sequential deposition of the following layers of SiO2 and CuO on the surface of CoFe2O4 leads to an increase in the size of the particles while maintaining their developed surface. The catalytic action of the obtained CoFe2O4/SiO2/CuO composite in the process of the initiated oxidation of cumene was investigated. Oxidation of cumene was performed without catalyst and using CoFe2O4/SiO2/CuO composite as catalyst. The use of CoFe2O4/SiO2/CuO as a catalyst allows to increase the rate of oxidation process by an order. At the same time there is a direct dependence of the growth rate of the reaction on the amount of the involved catalyst. Also, this catalyst demonstrated the ability to work without loss of catalytic activity of several cycles without regeneration. The catalyst CoFe2O4/SiO2/CuO is promising for use in the oxidation processes of hydrocarbons.
Keywords: heterogeneous catalysis; sol-gel synthesis; core-shell type catalysts; TEOS; initiated oxidation of cumene.
References:
-
1. Onuegbu T.U., Ogbuagu A.S., Ekeoma M.O. Тhe role of catalysts in green synthesis of chemicals for sustainable
future. J. Basic Phys. Res. 2011. Vol. 2(1). Р. 86–92.
2. Chernenko Y.M., Voloshin M.D., Laricheva L.P. Catalysts and sorbents: textbook. -Kamyanske: DDTU, 2017. 317 p.
(in Ukrainian).
3. Krylov O.V. Heterogeneous catalysis. Moscow: Akademkniga, 2004. 679 p. (in Russian).
4. Kolasinski K.K. Surface Science: Foundations of Catalysis and Nanoscience: 3-rd Ed. - New York: Wiley, 2012. 50
р. (https://doi.org/10.1002/9781119941798).
5. Ananikov V.P., Beletskaya I.P. Application of nanoscale, homogeneous and heterogeneous catalytic systems in
organic synthesis: changes in the structure of the active center during a chemical reaction in solution. Russ.
nanotechn. 2009. Vol. 4(7–8). P. 56–67 (in Russian).
6. Bukhtiyarov V.I. Modern trends in the development of surface science as applied to catalysis. The elucidation
of the structure–activity relationships in heterogeneous catalysts. Russ. Chem. Reviews. 2007. Vol. 76(6). P.
553-581. (http://doi.org/10.1070/RC2007v076n06ABEH003721).
7. Somorjai G.A, Park J.Y. Molecular factors of catalytic selectivity. Angew. Chem. 2008. Vol. 47(48). Р.
9212−9228. (https://doi.org/10.1002/anie.200803181).
8. Khimach N.Ju., Polunkin E.V. Nanostructured catalysts. Catalys. petrochem. 2012. Vol. 21. P. 86–98. (in
Ukrainian).
9. Dontsova T.A., Nahirniak S.V., Astrelin I.M. Metaloxide Nanomaterials and Nanocomposites of Ecological Purpose.
J. Nanomat. 2019. Vol. 2019. 31 p. (https://doi.org/10.1155/2019/5942194).
10. Védrine J.C. Metal Oxides in Heterogeneous Catalysis. – Amsterdam: Elsevier, 2018. 618 р.
11. Ludvíková J., Jirátová K., Kovanda F. Mixed oxides of transition metals as catalysts for total ethanol
oxidation. Chem. Papers. 2012. Vol. 66(6). P. 589–597. (https://doi.org/10.2478/s11696-011-0127-x).
12. Turova N.Ya., Turevskaya E.P., Kessler V.G., Yanovskaya M.I. Chemistry of Metal Alkoxides. Boston: Kluwer
Academic Publ., 2002. 568 p.
13. Faraji M., Yamini Y., Rezaee M. Magnetic Nanoparticles: Synthesis, Stabilization, Functionalization,
Characterization and Applications. J. Iran. Chem. Soc. 2010. Vol. 7(1). P. 1–37. (https://doi.org/10.1007/BF03245856).
14. Cheng T., Zhang D., Li H., Liu G. Magnetically recoverable nanoparticles as efficient catalysts for organic
transformations in aqueous medium. Green Chem. 2014. Vol. 16(7). P. 3401–3427. (https://doi.org/10.1039/C4GC00458B).
15. Levy D., Zayat M. The Sol-Gel Handbook: Synthesis, Characterization and Applications: 3 Vol. Set. – Weinheim:
Wiley-VCH, 2015. 1616 p. (https://doi.org/10.1002/9783527670819).
16. Cauqui M.A., Rodriguez-Izquierdo J.M. Application of the sol-gel methods to catalyst preparation. J.
Non-Cryst. Solids. 1992. Vol. 147–148. P. 724–728. (https://doi.org/10.1016/S0022-3093(05)80707-0).
17. Azlina H.N., Hasnidawani J.N., Norita H., Surip S.N. Synthesis of SiO2 Nanostructures Using Sol-Gel
Method.
Acta Phys. Polon. A. 2016. Vol. 129(4). Р.842–844. (https://doi.org/10.12693/APhysPolA.129.842).
18. Yamaura M., Camilo R.L., Sampaio L.C., Macêdoc M.A., Nakamura M., Toma H.E. Preparation and characterization
of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 2004. Vol. 279(2–3). P.
210–217. (https://doi.org/10.1016/j.jmmm.2004.01.094).
19. Kudryavtsev P., Figovsky O. Sol-gel technology of porous composites. – Germany: Lambert Acad. Publ., 2015. 476
p. (in Russian).
20. Mornet S., Portier J., Duguet E. A method for synthesis and functionalization of ultrasmall superparamagnetic
covalent carriers based on maghemite and dextran. J. Magn. Magn. Mater. 2005. Vol. 293(1). P. 127−134.
(https://doi.org/10.1016/j.jmmm.2005.01.053).
21. Yu B., He L., Wang Y., Cong H. Multifunctional PMMA@Fe3O4@DR Magnetic Materials for
Efficient Adsorption of
Dyes. Materials. 2017. Vol. 10(11). 1239. 12 p. (https://doi.org/10.3390/ma10111239).
22. Volovych I. Sol-gel processes in catalysis: catalyst synthesis, application, recycling and combination to
tandem reactions in microemulsions: dissert. dr. rer. nat. Berlin: Techn. Univers., 2014. 124 р.
23. Golub E.O., Golub N.P., Gomonay V.I., Szekeresh K. Yu., Kozma А.А., Halushkay J.V., Palok V.V., Foros N.M.,
Hlebena H.F., Kish Yu.Yu. Heterogeneous oxidation of light hydrocarbons on zeolite catalysts. Nauk. vìsn. Užgorod.
unìv. Ser. Hìm. 2017. Vol. 1(37). P. 94–98.
24. Atalay S., Ersöz G. Novel Catalysts in Advanced Oxidations of Organic Pollutants. Springer Intern. Publ.,
2016. 60 p. (https://doi.org/10.1007/978-3-319-28950-2)).
25. Li Z., Wang J., Liu M., Chen T., Chena J., Gea W., Fuace Z., Pengac R., Zhaice X., Lu Y. Core-shelled
mesoporous CoFe2O4–SiO2 material with good adsorption and high-temperature
magnetic recycling capabilities. J.
Phys. Chem. Solids. 2018. Vol. 115. P. 300–306. (https://doi.org/10.1016/j.jpcs.2017.12.056).
26. Costa R.С.С., Lelis M.F.F., Oliveira L.C.A., Fabris J.D., Ardissond J.D., Riosa R.R.V.A., Silvaa C.N., Lago
R.M. Novel active heterogeneous Fenton system based on Fe3−xMxO4 (Fe, Co, Mn,
Ni): The role of M2+ species on the
reactivity towards H2O2 reactions. J. Hazard. Mater. 2006. Vol. 129(1–3). Р. 171–178.
(https://doi.org/10.1016/j.jhazmat.2005.08.028).
27. Efimova I.V., Smirnovà O.V., Opeida I.A., Vakhitova L.N. Еffect of ascorbic acid and superoxide anion on the
processes of inhibition of chain-radical oxidation in an aprotic medium. Vopr. Khim. Khimich. Tekhnol. 2020. Vol.
4. Р. 55−59 (in Ukrainian). (https://doi.org/10.32434/0321-4095-2020-131-4-55-59).
28. Danks A.E., Hallb S.R., Schnepp Z. The evolution of ‘sol-gel’ chemistry as a technique for materials
synthesis. Mater. Horiz. 2016. Vol. 3(2). Р. 91–112. (https://doi.org/10.1039/C5MH00260E).
29. Katasonov P.A., Garifullin R.A. Thermal characterization of magnetite obtained by means of plasmaelectroytic
syntesys. Letters on Mater. 2013.Vol. 3. P. 322–325. (https://doi.org/10.22226/2410-3535-2013-4-322-325).
30. Frolova L.A. Physico-chemical bases of hydrophase technology of production of spinel ferrites of 3d-metals:
Dissert. Dr. Techn. Sci. – Dnipro: Ukr. State Univer. Chem. Techn., 2021. 405 p.
How to Cite
MAKIDO O., KHOVANETS’ G., KHAVUNKO O. SYNTHESIS OF CATALYSTS BASED ON MAGNETIC PARTICLES CoFe2O4. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021 Vol. LXVI. P. 90-97.