PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXVI 2021

Oleg МARCHUK, Оleksandr SMITIUKH

Ivan Franko Lviv National University, Kyryla and Mefodiya Str., 6, 79005 Lviv, Ukraine

DOI: https://doi.org/10.37827/ntsh.chem.2021.66.134

CRYSTAL STRUCTURE OF SULFIDES R3Co(Ni)0.5SiS7 (R – Ce, Pr)

Samples with the nominal compositions Ce(Pr)3Co(Ni)0.5SiS7 were prepared by fusion of the high-purity elemental constituents in evacuating silica ampoules. The purity of the starting materials was better than 99.9 wt. %. The crystalline structure of sulfides Ce3Co0.5SiS7 (a = 1.01283(6) nm; c = 0.57005(4) nm, RI = 0.0622, Rp = 0.2309), Ce3Ni0.5SiS7 (a = 1.01860(5) nm; c = 0.57151(4) nm, RI = 0.0652, Rp = 0.2449), Pr3Co0.5SiS7 (a = 1.01977(7) nm; c = 0.57237(5) nm, RI = 0.0418, Rp = 0.1861) and Pr3Ni0.5SiS7 (a = 1.01146(3) nm; c = 0.57004(3) nm, RI = 0.0548, Rp = 0.2206) was investagated by X-ray powder method (CuKα radiation, 10° ≤ 2θ ≤ 100°, step scan mode with a step size of 0.05° and a counting time of 20 s per data point).
The studied compounds belong to the structure type La3Mn0.5SiS7 (PS hP23, SG P63). The crystal structure of Ce3Co0.5SiS7, Pr3Co0.5SiS7, Ce3Ni0.5SiS7, and Pr3Ni0.5SiS7 compounds was calculated by using the WinCSD software package. The atoms of сerium (praseodymium) occupy the 6c site and locate in trigonal prisms with two additional atoms. The atoms of cobalt (nickel) occupy the site 2a, in which they have octahedral surrounding of sulfur atoms respectively. The site occupancy factors of the atoms Co(Ni) are refined to values close to 0.50 for all the investigated compounds. In the final cycles, the occupancy factors of the Co(Ni) sites were fixed to 0.50 to satisfy charge balance requirements. The Si atoms occupy the site 2b and are at the center of the tetrahedral [SiS4]. The tetrahedral series, which are formed by polyhedrals of atoms Si in a two-dimensional plane ab along the x-axis, is one of the most important features of the structure of Ce(Pr)3Co0.5SiS7 compounds. Octahedrals which are centered by Co(Ni) atoms build chains [Co(Ni)S6]n. The R – S atomic distances increase if we change atom Ce to Pr. The same situation is observed if we change atom Co to Ni. Basically, atoms which have bigger atomic radii lead to increasing of cell units. According to the crystal structure of the obtained Ce(Pr)3Co0.5SiS7 compounds, they may possess non-linear properties, and they are the prospective materials to materials science. The compounds may also possess magnetic properties as a consequence of the distribution of R3+ at the site 6c and atoms Co at the site 2a.

Keywords: quaternary sulfides, rare-earths, crystal structure, X-ray powder diffraction.

References:

    1. Mitchell K., Ibers J.A. Rare-Earth Transition-Metal Chalcogenides. Chem. Rev. 2002. Vol. 102. P. 1929 – 1952. (https://doi.org/10.1021/cr010319h).
    2. Michelet A., Flahaut J. Chimie minerale. Sur les composes du type La6MnSi2S14. C. R. Acad. Sci., Ser. C. 1969. Vol. 269. P. 1203–1205.
    3. Collin G., Flahaut J. Chimie minerale. Sur une famille de composes de type La6Mn2Al2S14. C. R. Acad. Sci., Ser. C. 1970. Vol. 270. P. 488–490.
    4. Guittard M., Julien-Pouzol M. Les composes hexagonaux de type La3CuSiS7. Bull. Soc. Chim. Fr. 1970. Vol. 7. P. 2467–2469.
    5. Collin G., Laruelle P. Structure de La6Cu2Si2S14. Bull. Soc. Fr. Mineral. Cristallogr. 1971. Vol. 94. P. 175–176. (https://doi.org/10.3406/bulmi.1971.6576).
    6. Collin G., Flahaut J. Sur plusieurs series de composes non lacunaires de formule L6B2C2X14. Bull. Soc. Chim. Fr. 1972. Vol. 6. P. 2207–2209.
    7. Collin G., Étienne J., Laruelle P. Etude structurale des systemes Ln2S3 – GeS2. Bull. Soc. Fr. Mineral. Cristallogr. 1973. Vol. 96. P. 12–17.
    8. Perez G., Darriet-Duale M., Hagenmuller P. Les systèmes ternaires MS2 – CdS – Ln2S3 à 1050 ºC (M = Si, Ge) (Ln = La-Gd). J. Solid State Chem. 1970. Vol. 2(1). P. 42–48. (https://doi.org/10.1016/0022-4596(70)90031-9).
    9. Choudhury A., Dorhout P.K. Alkali-Metal Thiogermanates: Sodium Channels and Variations on the La3CuSiS7 Structure Type. Inorg. Chem. 2015. Vol. 54. P. 1055–1065. (https://doi.org/10.1021/ic502418s).
    10. Rodier N., Guittard M., Flahaut J. Structure cristalline de La6Mn2Ga2S1414. C. R. Acad. Sci., Ser. C. 1983. Vol. 296. P. 65–70. (https://doi.org/10.1002/chin.198319003).
    11. Van Calcar P.M., Dorhout P.K. A study of new rare earth metal group 13 chalcogenides: structural chemistry and optical properties. Mater. Sci. Forum. 1999. Vol. 315. P. 322–330. (https://doi.org/10.4028/www.scientific.net/MSF.315-317.322).
    12. Yin W., Wang W., Kang L., Lin Z., Feng K., Shi Y., Hao W., Yao J. L., Wu Y. Ln3FeGaQ7: A new series of transition-metal rare-earth chalcogenides. 2013. Vol. 202. P. 269–275. (https://doi.org/10.1016/j.jssc.2013.03.029).
    13. Yin W., Shi Y., Kang B., Deng J., Yao J., Wu Y. J. Rare-earth transition-metal chalcogenides Ln3MGaS7 (Ln = Nd, Sm, Dy, Er; M = Co, Ni) and Ln3MGaSe7 (Ln = Nd, Sm, Gd, Dy; M = Co; Ln = Nd, Gd, Dy; M = Ni). Solid State Chem. 2014. Vol. 213. P. 87–92. (https://doi.org/10.1016/j.jssc.2014.01.033).
    14. Huch M.R., Gulay L.D., Olekseyuk I.D. Crystal structures of the R33Mg0.5GeS7 (R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er) compounds. J. Alloys Compd. 2006. Vol. 424. P. 114–118. (https://doi.org/10.1016/j.jallcom.2005.12.025).
    15. Gulay L.D., Daszkiewicz M., Huch M.R., Pietraszko A. Ce3Mg0.5GeS7 from single-crystal data. Acta Crystallogr., Sect. E. 2007. Vol. 63. i187. (https://doi.org/10.1107/S1600536807048593).
    16. Assoud A., Sankar C. R., Kleinke H. Synthesis, crystal structure, electronic structure and electrical conductivity of La3GeSb0.31Se7 and La3SnFe0.61Se7. Solid State Sci. 2014. Vol. 38. P. 124-128. (https://doi.org/10.1016/j.solidstatesciences.2014.10.009).
    17. Strok O.M., Daszkiewicz M., Gulay L.D. Crystal structure of R3Mg0.5DSe7 (R = Ce, Pr; D = Si, Ge). Chem. Met. Alloys. 2015. Vol. 8. P. 16–21. (https://doi.org/10.30970/cma8.0298).
    18. de Saint-Giniez D., Laruelle P., Flahaut J. Structure cristalline du sulfure double de cerium et d'aluminium Ce6Al3.33S14. C. R. Acad. Sci., Ser. C. 1968. Vol. 267. P. 1029–1032.
    19. Patrie M., Guittard M. Chimie minerale. Sur les composes du type Ce6Al10/3S14. C. R. Acad. Sci., Ser. C. 1969. Vol. 268. P. 1136–1138.
    20. Jaulmes S., Palazzi M., Laruelle P. Preparation et structure de La6(Ga,Na)Ga2S14. Mater. Res. Bull. 1988. Vol. 23. P. 831–835. (https://doi.org/10.1016/0025-5408(88)90076-1).
    21. Hartenbach I., Nilges T., Schleid T. Thiosilicate der Selten Erd Elemente: IV. Die quasiisostrukturellen Verbindungen NaSm3S3[SiS4], CuCe3S3[SiS4], Ag0.63Ce3S2.63Cl0.37[SiS4] und Sm3S2Cl[SiS4] – Synthese, kristallstruktur und untersuchungen zur silberionendynamik. Z. Anorg. Allg. Chem. 2007. Vol. 633. P. 2445–2452. (https://doi.org/10.1002/zaac.200700356).
    22. Iyer A.K., Rudyk B.W., Lin X., Singh H., Sharma A.Z., Wiebe C.R., Mar A. Noncentro-symmetric rare-earth copper gallium chalcogenides RE3CuGaCh7 (RE = La – Nd; Ch = S, Se): An unexpected combination. J. Solid State Chem. 2015. Vol. 229. P. 150–159. (https://doi.org/10.1016/j.jssc.2015.05.016).
    23. Iyer A.K., Yin W., Rudyk B.W., Lin X., Nilges T., Mar A. Metal ion displacements in noncentrosymmetric chalcogenides La3Ga1.67S7, La3Ag0.6GaCh7 (Ch = S, Se) and La3MGaSe7 (M = Zn, Cd). J. Solid State Chem. 2016. Vol. 243. P. 221–231. (https://doi.org/10.1016/j.jssc.2016.08.031).
    24. Shi Y.F., Chen Y.K., Chen M.K., Wu L.M., Lin H., Zhou L.J., Chen L. Strongest second harmonic generation in the polar R3MTQ7 family: atomic distribution induced nonlinear optical cooperation. Chem. Mater. 2015. Vol. 27. P. 1876–1884. (https://doi.org/10.1021/acs.chemmater.5b00177).
    25. Zhao H.J. Syntheses, crystal structures, and NLO properties of the quaternary sulfides RE3Sb0.33SiS7 (RE = La, Pr). J. Solid State Chem. 2015. Vol. 227. P. 5–9. (https://doi.org/10.1016/j.jssc.2015.03.010).
    26. Zhang X., Chen W., Mei D., Zheng C., Liao F., Li Y., Lin J., Huang F. Synthesis, structure, magnetic and photo response properties of La3CuGaSe7. J. Alloys Compd. 2014. Vol. 610. P. 671–675. (https://doi.org/10.1016/j.jallcom.2014.05.086).
    27. Nanjundaswamy K.S., Gopalakrishnan J. Preparation, structure, and magnetic properties of isostructural La3MAlS7 and La3MFeS7 (M = Mg, Mn, Fe, Co, Ni or Zn). J. Solid State Chem. 1983. Vol. 49. P. 51–58. (https://doi.org/10.1016/0022-4596(83)90215-3).
    28. Rudyk B.W., Stoyko S.S., Mar A. Rare-earth transition-metal indium sulfides RE3FeInS7 (RE = La – Pr), RE3CoInS7 (RE = La, Ce) and La3NiInS7. J. Solid State Chem. 2013. Vol. 208. P. 78–85. (https://doi.org/10.1016/j.jssc.2013.09.035).
    29. 29. Rudyk B.W., Stoyko S.S., Oliynyk A.O., Mar A. Rare-earth transition-metal gallium chalcogenides RE3MGaCh7 (M = Fe, Co, Ni; Ch = S, Se). J. Solid State Chem. 2014. Vol. 210. P. 79–88. (https://doi.org/10.1016/j.jssc.2013.11.003).
    30. He J., Wang Z., Zhang X., Cheng Y., Gong Y., Lai X., Zheng C., Lin J., Huang F. Synthesis, structure, magnetic and photoelectric properties of Ln3M0.5M’Se7 (Ln = La, Ce, Sm; M = Fe, Mn; M’ = Si, Ge) and La3MnGaSe7. RSC Adv. 2015. Vol. 5. P. 52629–52635. (https://doi.org/10.1039/C5RA05629B).
    31. Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Cryst. 2014. Vol. 47(2). P. 803–805. (https://doi.org/10.1107/S1600576714001058).
    32. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011. Vol. 44. P. 1272–1276. (https://doi.org/10.1107/S0021889811038970).
    33. Shannon R.D. Revised effective ionic radii and systematic studied of interatomic distances in halides and chalcogenides. Acta Cryst. 1976. Vol. 39. P. 751–767. (https://doi.org/10.1107/S0567739476001551).

How to Cite

МARCHUK O., SMITIUKH O. CRYSTAL STRUCTURE OF SULFIDES R3Co(Ni)0.5SiS7 (R – Ce, Pr). Proc. Shevchenko Sci. Soc. Chem. Sci. 2021 Vol. LXVI. P. 134-141.

Download the pdf