УДК 54-162(546.655+546.656+546.73+546.74+546.28+546.22)

https://doi.org/10.37827/ntsh.chem.2021.66.134

Олег МАРЧУК, Олександр СМІТЮХ

КРИСТАЛІЧНА СТРУКТУРА СУЛЬФІДІВ R₃Co(Ni)_{0,5}SiS₇ (R – Ce, Pr)

Волинський національний університет імені Лесі Українки, пр. Волі, 13, 43025 Луцьк, Україна e-mail: marchuk.oleg@vnu.edu.ua

Кристалічна структура сульфідів Ce₃Co_{0,5}SiS₇ (a = 1,01283(6) нм; c = 0,57005(4) нм), Ce₃Ni_{0,5}SiS₇ (a = 1,01860(5) нм; c = 0,57151(4) нм), Pr₃Co_{0,5}SiS₇ (a = 1,01977(7) нм; c = 0,57237(5) нм) і Pr₃Ni_{0,5}SiS₇ (a = 1,01146(3) нм; c = 0,57004(3) нм) вивчена ренттенівським методом порошку. Їхня структура належить до структурного типу La₃Mn_{0,5}SiS₇ (CП hP23, ПГ P63). У структурі вивчених сульфідів атоми Ce(Pr) розташовані в ПСТ 6c і разом з атомами сульфуру формують тригональні призми з двома додатковими атомами. Атоми Co(Ni) розташовані в ПСТ 2a (K3П = 0,5) і для них характерне октаедричне оточення з атомів сульфуру. Для атомів Si (ПСТ 2b) характерним є KЧ = 4. Центровані атомами Co(Ni) октаедри утворюють нескінченні ланцюжки [Co(Ni) 6S]_n.

Ключові слова: тетрарні сульфіди, РЗМ, кристалічна структура, рентгенівський метод порошку.

Вступ

Серед різноманіття неорганічних сполук значний відсоток належить халькогенідам рідкісноземельних і перехідних металів [1]. В окрему групу можна виділити тетрарні халькогеніди $R_3Me_{1-x}Me^{2}X_7$ (R – P3M; Me, Me' – метал або металоїд; X = S, Se), які вперше були синтезовані ще у минулому столітті, й стали багатим джерелом нових сполук і складних халькогенідних фаз на їхній основі [2–23]. Ці халькогеніди можуть виявляти широкий спектр фізичних властивостей, що є наслідком їх нецентросиметричної гексагональної структури (СП *hP23*, ПГ *P*6₃). Деякі з них проявляють нелінійно-оптичні властивості та володіють фотопровідністю [24–26]. Якщо компонентом Me є перехідний d-елемент періодичної системи, то тетрарні фази La₃MeAlS₇ (Me = Mn, Fe, Co, Ni), La₃MeInS₇ (M = Fe, Co, Ni), R₃MeGaX₇ (Me = Fe, Co, Ni; X = S, Se), R₃Me_{0.5}Me'Se₇ (Me = Mn, Fe; Me' = Si, Ge) виявляють магнітні властивості [27–30] та ін.

У нашій праці вперше подано результати вивчення кристалічної структури чотирьох халькогенідів Ce₃Co_{0,5}SiS₇, Pr₃Co_{0,5}SiS₇, Ce₃Ni_{0,5}SiS₇ і Pr₃Ni_{0,5}SiS₇, що кристалізуються у структурному типі La₃Mn_{0,5}SiS₇ (СП *hP*23, ПГ *P*6₃).

Методика експерименту

Зразки для досліджень стехіометричного складу Ce(Pr)₃Co(Ni)_{0.5}SiS₇ загальною масою 1,0 г готували сплавлянням простих речовин напівпровідникової чистоти у вакуумованих до залишкового тиску (10^{-2} Па) кварцових контейнерах. Сплавляння виконували в електричній муфельній печі з програмним управлінням технологічним процесами МП-30 згідно з технологічним режимом: нагрівання до температури 1320 К зі швидкістю 12 К/год; витримка за температури 1320 К (2 години); охолодження до температури 770 К зі швидкістю 12 К/год; гомогенізуюче відпалювання за температури 770 К (500 годин); гартування у воду кімнатної температури без розвакуумування. Кристалічну структуру синтезованих сульфідів вивчали рентгенівським методом порошку. Дифрактограми сплавів були отримані на рентгенівському дифрактометрі ДРОН 4-13 (CuK α – випромінювання (0,154185 нм), $10^{\circ} \le 20 \le 100^{\circ}$, крок зйомки 0,05°, експозиція у кожній точці 20 с). Розрахунок кристалічної структури Ce₃Co_{0.5}SiS₇, Pr₃Co_{0.5}SiS₇ i Pr₃Ni_{0.5}SiS₇ проведено методом Рітвельда (пакет програм WinCSD [31]). Візуалізацію структури виконано з використанням програми VESTA [32].

Результати експерименту та обговорення

Отримані дифрактограми проіндексовані у гексагональній сингонії (ПГ *P*6₃). Умови рентгенівського експерименту та кристалографічні параметри тетрарних сульфідів наведено у табл. 1 і 2.

Таблиця 1

Експериментальні умови одержання масивів дифракційних даних і результати уточнення структури сполук Ce3C00,5SiS7 і Pr3C00,5SiS7

Table 1

CC3C00.551	.57 and 113C00.55157 Compounds		
Формула	Ce ₃ Co _{0,5} SiS ₇	Pr ₃ Co _{0,5} SiS ₇	
а, (нм)	1,01283(6)	1,01977(7)	
с, (нм)	0,57005(4)	0,57237(5)	
Об'єм комірки (нм ³)	0,5064(1)	0,5155(1)	
Густина (розрахована) (г/см ³)	4,6059(9)	4,5400(1)	
Абсорбційний коефіцієнт (1/см)	1173,06	1187,56	
Спосіб обрахунку	Повнопрофільний	Повнопрофільний	
Кількість атомних позицій	6	6	
Кількість уточнюваних параметрів	19	19	
2θ τα sin θ/λ (макс.)	100,00; 0,497	100,00; 0,497	
Фактор шкали	0,5488(4)	0,3474(6)	
Кінцеві <i>R</i> -фактори: <i>R</i> _I	0,0622	0,0652	
R_P	0,2309	0,2449	

Experimental conditions for obtaining diffraction data arrays and results of refining the structure of Ce₃Co_{0.5}SiS₇ and Pr₃Co_{0.5}SiS₇ compounds

Комплекс проведених розрахунків дає підстави констатувати про належність структури сполук Ce(Pr)₃Co(Ni)_{0.5}SiS₇ до структурного типу La₃Mn_{0.5}SiS₇ (CП *hP23*, ПГ *P6*₃) [2]. Результати уточнення координат та ізотропних параметрів зміщення атомів подані у табл. 3. Теоретичні, експериментальні та різницеві профілі дифрактограм для сполук Ce₃Co_{0.5}SiS₇, Pr₃Co_{0.5}SiS₇, Ce₃Ni_{0.5}SiS₇ і Pr₃Ni_{0.5}SiS₇ зображені на рис. 1.

Таблиця 2

Експериментальні умови одержання масивів дифракційних даних і результати уточнення структури сполук Ce3Ni0,5SiS7 і Pr3Ni0,5SiS7

Table 2

Experimental conditions for obtaining arrays of diffraction data and the results of refining the structure of compounds Ce₃Ni_{0.5}SiS₇ and Pr₃Ni_{0.5}SiS₇

Формула	Ce ₃ Ni _{0,5} SiS ₇	Pr ₃ Ni _{0,5} SiS ₇
а, (нм)	1,01860(5)	1,01146(3)
С, (НМ)	0,57151(4)	0,57004(3)
Об'єм комірки (нм ³)	0,51353(8)	0,50505(6)
Густина (розрахована) (г/см ³)	4,5414(7)	4,5522(5)
Абсорбційний коефіцієнт (1/см)	1105,87	1156,80
Спосіб обрахунку	Повнопрофільний	Повнопрофільний
Кількість атомних позицій	6	6
Кількість уточнюваних параметрів	19	19
2θ τα sin θ/λ (макс.)	100,00; 0,497	100,00; 0,497
Фактор шкали	0,5224(3)	0,5108(3)
Кінцеві <i>R</i> -фактори: <i>R</i> _I	0,0418	0,0548
R_P	0,1861	0,2206

Рис. 1. Теоретичні (—), експериментальні (*****) та різницеві профілі дифрактограм для сполук Ce₃Co_{0,5}SiS₇ (*a*), Pr₃Co_{0,5}SiS₇ (*b*), Ce₃Ni_{0,5}SiS₇ (*b*) і Pr₃Ni_{0,5}SiS₇ (*c*).

Fig. 1. Theoretical, experimental and difference profiles of diffractograms of Ce₃Co_{0.5}SiS₇ (*a*), Pr₃Co_{0.5}SiS₇ (*δ*), Ce₃Ni_{0.5}SiS₇ (*b*) and Pr₃Ni_{0.5}SiS₇ (*c*) compounds.

У табл. 4 подано результати розрахунку міжатомних відстаней (δ , нм) і координаційні числа (KЧ) атомів у структурі сполук Ce₃Co(Ni)_{0,5}SiS₇ та Pr₃Co(Ni)_{0,5}SiS₇. Розраховані міжатомні відстані корелюють із сумами відповідних іонних радіусів [33].

У структурі тетрарних сульфідів R₃Co(Ni)_{0,5}SiS₇ (R – Ce, Pr) атоми P3M заселяють одну ПСТ 6*c* і координують навколо себе вісім атомів сульфуру, утворюючи тригональні призми з двома додатковими атомами (рис. 2).

Атоми Co(Ni) заселяють одну ПСТ 2a (K3П = 0,5). Ці атоми координують навколо себе шість атомів сульфуру, утворюючи октаедри [Co(Ni)S₆]. Утворені октаедри мають спільні грані і в напрямі осі *с* утворюють «колони». Атоми Si заселяють ПСТ 2b, для них характерним є утворення симетричних тетраедрів [SiS₄].

Таблиця 3

Координати та ізотропні параметри зміщення атомів у структурі сполук Ce(Pr)₃Co(Ni)_{0,5}SiS₇

Table 3

Coordinates and isotropic	parameters of atomic (displacement in the structure
of Ce	e(Pr)3Co(Ni)0.5SiS7 com	pounds

Атом	ПСТ	КЗП	x	У	Ζ	<i>B</i> _{iso} ×10 ² (нм ²)
Ce ₃ Co _{0,5} SiS ₇						
Ce	6c	1,0	0,6442(2)	0,8762(2)	0,023(2)	1,00(3)
Co*	2a	0,5	0	0	0,2900*	0,9(4)
Si	2b	1,0	1/3	2/3	0,443(3)	1,0(5)
S1	6 <i>c</i>	1,0	0,4822(13)	0,5940(10)	0,288(2)	1,0(2)
S2	6 <i>c</i>	1,0	0,9165(9)	0,1614(9)	0,029(5)	1,0(2)
S3	2b	1,0	1/3	2/3	0,815(3)	1,0(2)
			Pr ₃ Coo	0,5 SiS 7		
Pr	6 <i>c</i>	1,0	0,6422(3)	0,8758(3)	0,015(2)	0,99(4)
Co*	2a	0,5	0	0	0,2900*	0,9(5)
Si	2b	1,0	1/3	2/3	0,442(3)	0,9(6)
S1	6 <i>c</i>	1,0	0,4761(15)	0,5904(12)	0,292(2)	1,0(3)
S2	6 <i>c</i>	1,0	0,9183(11)	0,1593(11)	0,039(3)	1,0(2)
S3	2b	1,0	1/3	2/3	0,784(4)	1,0(5)
			Ce ₃ Ni	0,5 SiS 7		
Ce	6 <i>c</i>	1,0	0,6442(2)	0,8763(2)	0,0125(11)	1,00(3)
Ni*	2a	0,5	0	0	0,2900*	1,0(4)
Si	2b	1,0	1/3	2/3	0,433(3)	0,8(4)
S1	6 <i>c</i>	1,0	0,4759(11)	0,5875(9)	0,292(2)	0,9(2)
S2	6 <i>c</i>	1,0	0,9184(8)	0,1598(8)	0,042(2)	1,0(2)
S3	2b	1,0	1/3	2/3	0,795(3)	1,1(3)
Pr ₃ Ni _{0,5} SiS ₇						
Pr	6c	1,0	0,6441(2)	0,8750(2)	0,0161(14)	0,99(3)
Ni*	2a	0,5	0	0	0,2900*	0,8(8)
Si	2b	1,0	1/3	2/3	0,430(3)	0,9(5)
S1	6 <i>c</i>	1,0	0,4717(12)	0,5800(9)	0,279(2)	1,0(2)
S2	6 <i>c</i>	1,0	0,9142(9)	0,1570(9)	0,036(3)	1,0(2)
S3	2b	1,0	1/3	2/3	0,795(3)	1,0(4)
* 2.1:						

* Зафіксовано.

Рис. 2. Проєкція елементарної комірки та координаційне оточення атомів у структурі тетрарних сульфідів R₃Co(Ni)_{0.5}SiS₇ (R – Ce, Pr).

Fig. 2. The projection of unit cell and coordinating surrounding of atoms in the structure of quaternary sulfides $R_3Co(Ni)_{0.5}SiS_7$ (R – Ce, Pr).

Таблиця 4

Міжатомні відстані (б, нм) та КЧ атомів Се, Pr, Co, Ni та Si

Table 4

Interatomic distances (δ, nm) and CN of Ce, Pr, Co, Ni and Si atoms

Ce ₃ C	Co _{0,5} SiS ₇	Pr ₃ Co ₀	,5SiS7	1/11
Атоми	δ , нм	Атоми	δ , нм	КЧ
Ce – 1S1	0,2793(9)	Pr – 1S1	0,2819(11)	8
- 1S1	0,2826(9)	- 1S1	0,2857(11)	
- 1S1	0,2898(13)	- 1S1	0,2896(14)	
- 1S2	0,2906(13)	- 1S2	0,292(2)	
- 1S2	0,298(3)	- 1S2	0,2987(14)	
- 1S2	0,2995(13)	- 1S2	0,3018(14)	
- 1S2	0,3025(8)	- 1S2	0,3083(10)	
- 1S3	0,305(3)	- 183	0,317(2)	
Co – 3S2	0,2575	Co – 3S2	0,2592	6
- 3S2	0,2642	- 382	0,2598	
Si – 3S1	0,213(2)	Si – 3S1	0,196(3)	4
- 183	0.2168(13)	- 183	0.2143(15)	
	-,,			
Ce ₃]	Ni0,5SiS7	Pr ₃ Ni ₀ ,	5SiS7	VU
Сез] Атоми	Ni0,5SiS7 <i>б</i> , нм	РгзNio, Атоми	<u>,5SiS7</u> <i>δ</i> , нм	КЧ
Сез] Атоми Се – 1S1	Ni0,5SiS7 <i>б</i> , нм 0,2800(8)	РгзNi0, Атоми Pr – 1S1	<u>5</u> SiS ₇ <u><i>δ</i>, нм</u> 0,2792(12)	КЧ 8
Сез] Атоми Се – 1S1 – 1S1	Ni _{0,5} SiS7 <i>б</i> , нм 0,2800(8) 0,2846(8)	Рг ₃ Ni ₀ , Атоми Pr – 1S1 – 1S1	<u>5</u> SiS ₇ <u><i>δ</i>, нм</u> 0,2792(12) 0,2797(9)	- КЧ 8
Сез Атоми Се – 1S1 – 1S1 – 1S1	Ni0,5SiS7 0,2800(8) 0,2846(8) 0,2878(12)	Рг ₃ Ni ₀ Атоми Pr – 1S1 – 1S1 – 1S1	<u>5</u> SiS ₇ <u><i>δ</i>, нм</u> 0,2792(12) 0,2797(9) 0,2807(9)	- КЧ 8
<u>Сез</u>] Атоми Се – 1S1 – 1S1 – 1S1 – 1S2	Хі0,5SiS7 0,2800(8) 0,2846(8) 0,2878(12) 0,2903(10	Рг ₃ Ni ₀ Атоми Pr – 1S1 – 1S1 – 1S1 – 1S1 – 1S2	<u>л</u> SiS7 <u></u> <i>δ</i> , нм 0,2792(12) 0,2797(9) 0,2807(9) 0,292(2)	- КЧ 8
Сез] Атоми Се – 1S1 – 1S1 – 1S1 – 1S2 – 1S2	Ni0,5SiS7 б, нм 0,2800(8) 0,2846(8) 0,2878(12) 0,2903(10 0,3010(10)	Рг ₃ Ni ₀ , Атоми Рг – 1S1 – 1S1 – 1S1 – 1S1 – 1S2 – 1S2	<u>5</u> SiS7 <u></u> <i>δ</i> , нм 0,2792(12) 0,2797(9) 0,2807(9) 0,292(2) 0,2998(11)	- КЧ 8
Сез] Атоми Се – 1S1 – 1S1 – 1S1 – 1S2 – 1S2 – 1S2 – 1S2	Ni0,5SiS7 б, нм 0,2800(8) 0,2846(8) 0,2878(12) 0,2903(10 0,3010(10) 0,3016(10)	Рг ₃ Ni ₀ , Атоми Рг – 1S1 – 1S1 – 1S1 – 1S2 – 1S2 – 1S2 – 1S2	δ, HM 0,2792(12) 0,2797(9) 0,2807(9) 0,292(2) 0,2998(11) 0,3047(8)	- КЧ 8
Сез] Атоми Се – 1S1 – 1S1 – 1S1 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2	Ni0,5SiS7 0,2800(8) 0,2846(8) 0,2878(12) 0,2903(10 0,3010(10) 0,3016(10) 0,3060(7) 0,3000(7)	Рг ₃ Ni ₀ , Атоми Рг – 1S1 – 1S1 – 1S1 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2	δ, HM 0,2792(12) 0,2797(9) 0,2807(9) 0,292(2) 0,2998(11) 0,3047(8) 0,3056(11)	- КЧ 8
Сез] Атоми Се – 1S1 – 1S1 – 1S1 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S3	Ni0,5SiS7 0,2800(8) 0,2846(8) 0,2878(12) 0,2903(10 0,3010(10) 0,3016(10) 0,3060(7) 0,3192(12)	Рг ₃ Ni ₀ , Атоми Рг – 1S1 – 1S1 – 1S1 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2	δ, HM 0,2792(12) 0,2797(9) 0,2807(9) 0,292(2) 0,2998(11) 0,3047(8) 0,3056(11) 0,313(2)	- КЧ 8
Сез] Атоми Се – 1S1 – 1S1 – 1S1 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S3 Ni – 3S2	Ni0,5SiS7 0,2800(8) 0,2846(8) 0,2878(12) 0,2903(10 0,3010(10) 0,3016(10) 0,3016(10) 0,3060(7) 0,3192(12) 0,2590	Рг ₃ Ni ₀ , Атоми Pr – 1S1 – 1S1 – 1S1 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S3 Ni – 3S2	SiS7 δ , HM 0,2792(12) 0,2797(9) 0,2807(9) 0,2802(2) 0,2998(11) 0,3047(8) 0,3056(11) 0,313(2) 0,2574 0,2574	КЧ 8 6
Сез] Атоми Се – 1S1 – 1S1 – 1S1 – 1S2 – 1S3 – 1S1 – 1S1 – 1S1 – 1S1 – 1S1 – 1S1 – 1S1 – 1S1 – 1S2 – 1S3 – 1S3 – 1S3 – 1S3 – 1S3	Ni0,5SiS7 0,2800(8) 0,2846(8) 0,2878(12) 0,2903(10 0,3010(10) 0,3016(10) 0,3060(7) 0,3192(12) 0,2590 0,2600	Рг ₃ Ni ₀ , Атоми Pr – 1S1 – 1S1 – 1S1 – 1S2 – 1S2	SiS7 δ , HM 0,2792(12) 0,2797(9) 0,2807(9) 0,2802(2) 0,2998(11) 0,3047(8) 0,3056(11) 0,313(2) 0,2574 0,2598	КЧ 8 6
Сез] Атоми Се – 1S1 – 1S1 – 1S1 – 1S2 – 3S2 – 3S2	Ni0,5SiS7 0,2800(8) 0,2846(8) 0,2878(12) 0,2903(10 0,3010(10) 0,3016(10) 0,3060(7) 0,3192(12) 0,2590 0,2600 0,2600 0,207(2)	Рг ₃ Ni ₀ , Атоми Pr – 1S1 – 1S1 – 1S1 – 1S2 – 1S3 – 1S2 – 1S3 – 1S2 – 1S2 – 1S3 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 1S2 – 3S2 – 3S2 – 3S2	SiS7 δ , HM 0,2792(12) 0,2797(9) 0,2807(9) 0,2802(2) 0,2998(11) 0,3047(8) 0,3056(11) 0,313(2) 0,2574 0,2598 0,208(2) 0,208(2)	КЧ 8 6 4

Висновки

Ренттенівським методом порошку вперше вивчено кристалічну структуру сульфідів Се₃Co_{0,5}SiS₇ (a = 1,01283(6) нм, c = 0,57005(4) нм, $R_I = 0,0622$, $R_P = 0,0652$), Ce₃Ni_{0,5}SiS₇ (a = 1,01860(5) нм, c = 0,57151(4) нм), $R_I = 0,0418$, $R_P = 0,0548$), Pr₃Co_{0,5}SiS₇ (a = 1,01977(7) нм, c = 0,57237(5) нм, $R_I = 0,2309$, $R_P = 0,2449)$ і Pr₃Ni_{0,5}SiS₇ (a = 1,01146(3) нм, c = 0,57004(3) нм, $R_I = 0,1861$, $R_P = 0,2206$), Cинтезовані сульфіди кристалізуються у структурному типі La₃Mn_{0,5}SiS₇ (СП *hP*23, ПГ *P*6₃).

ЛІТЕРАТУРА

- 1. *Mitchell K., Ibers J.A.* Rare-Earth Transition-Metal Chalcogenides. Chem. Rev. 2002. Vol. 102. P. 1929 1952. (https://doi.org/10.1021/cr010319h).
- Michelet A., Flahaut J. Chimie minerale. Sur les composes du type La₆MnSi₂S₁₄. C. R. Acad. Sci., Ser. C. 1969. Vol. 269. P. 1203–1205.
- Collin G., Flahaut J. Chimie minerale. Sur une famille de composes de type La₆Mn₂Al₂S₁₄. C. R. Acad. Sci., Ser. C. 1970. Vol. 270. P. 488–490.
- 4. *Guittard M., Julien-Pouzol M.* Les composes hexagonaux de type La₃CuSiS₇. Bull. Soc. Chim. Fr. 1970. Vol. 7. P. 2467–2469.
- Collin G., Laruelle P. Structure de La₆Cu₂Si₂S₁₄. Bull. Soc. Fr. Mineral. Cristallogr. 1971. Vol. 94. P. 175–176. (https://doi.org/10.3406/bulmi.1971.6576).
- 6. *Collin G., Flahaut J.* Sur plusieurs series de composes non lacunaires de formule L₆B₂C₂X₁₄. Bull. Soc. Chim. Fr. 1972. Vol. 6. P. 2207–2209.
- Collin G., Étienne J., Laruelle P. Etude structurale des systemes Ln₂S₃ GeS₂. Bull. Soc. Fr. Mineral. Cristallogr. 1973. Vol. 96. P. 12–17.
- Perez G., Darriet-Duale M., Hagenmuller P. Les systèmes ternaires MS₂ CdS Ln₂S₃ à 1050 °C (M = Si, Ge) (Ln = La-Gd). J. Solid State Chem. 1970. Vol. 2(1). P. 42–48. (https://doi.org/10.1016/0022-4596(70)90031-9).
- Choudhury A., Dorhout P.K. Alkali-Metal Thiogermanates: Sodium Channels and Variations on the La₃CuSiS₇ Structure Type. Inorg. Chem. 2015. Vol. 54. P. 1055–1065. (https://doi.org/10.1021/ic502418s).
- Rodier N., Guittard M., Flahaut J. Structure cristalline de La₆Mn₂Ga₂S₁₄. C. R. Acad. Sci., Ser. C. 1983. Vol. 296. P. 65–70. (https://doi.org/10.1002/chin.198319003).
- 11. Van Calcar P.M., Dorhout P.K. A study of new rare earth metal group 13 chalcogenides: structural chemistry and optical properties. Mater. Sci. Forum. 1999. Vol. 315. P. 322–330. (https://doi.org/10.4028/www.scientific.net/MSF.315-317.322).
- Yin W., Wang W., Kang L., Lin Z., Feng K., Shi Y., Hao W., Yao J. L., Wu Y. Ln₃FeGaQ₇: A new series of transition-metal rare-earth chalcogenides. 2013. Vol. 202. P. 269–275. (https://doi.org/10.1016/j.jssc.2013.03.029).
- Yin W., Shi Y., Kang B., Deng J., Yao J., Wu Y. J. Rare-earth transition-metal chalcogenides Ln₃MGaS₇ (Ln = Nd, Sm, Dy, Er; M = Co, Ni) and Ln₃MGaS₇ (Ln = Nd, Sm, Gd, Dy; M = Co; Ln = Nd, Gd, Dy; M = Ni). Solid State Chem. 2014. Vol. 213. P. 87–92. (https://doi.org/ 10.1016/j.jssc.2014.01.033).
- Huch M.R., Gulay L.D., Olekseyuk I.D. Crystal structures of the R₃Mg_{0.5}GeS₇ (R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er) compounds. J. Alloys Compd. 2006. Vol. 424. P. 114– 118. (https://doi.org/10.1016/j.jallcom.2005.12.025).

- Gulay L.D., Daszkiewicz M., Huch M.R., Pietraszko A. Ce₃Mg_{0.5}GeS₇ from single-crystal data. Acta Crystallogr., Sect. E. 2007. Vol. 63. i187. (https://doi.org/10.1107/S16005368070 48593).
- Assoud A., Sankar C. R., Kleinke H. Synthesis, crystal structure, electronic structure and electrical conductivity of La₃GeSb_{0.31}Se₇ and La₃SnFe_{0.61}Se₇. Solid State Sci. 2014. Vol. 38. P. 124-128. (https://doi.org/10.1016/j.solidstatesciences.2014.10.009).
- 17. *Strok O.M., Daszkiewicz M., Gulay L.D.* Crystal structure of R₃Mg_{0.5}DSe₇ (R = Ce, Pr; D = Si, Ge). Chem. Met. Alloys. 2015. Vol. 8. P. 16–21. (https://doi.org/10.30970/cma8.0298).
- de Saint-Giniez D., Laruelle P., Flahaut J. Structure cristalline du sulfure double de cerium et d'aluminium Ce₆Al_{3.33}S₁₄. C. R. Acad. Sci., Ser. C. 1968. Vol. 267. P. 1029–1032.
- Patrie M., Guittard M. Chimie minerale. Sur les composes du type Ce₆Al_{10/3}S₁₄. C. R. Acad. Sci., Ser. C. 1969. Vol. 268. P. 1136–1138.
- Jaulmes S., Palazzi M., Laruelle P. Preparation et structure de La₆(Ga, Na)Ga₂S₁₄. Mater. Res. Bull. 1988. Vol. 23. P. 831–835. (https://doi.org/10.1016/0025-5408(88)90076-1).
- Hartenbach I., Nilges T., Schleid T. Thiosilicate der Selten Erd Elemente: IV. Die quasiisostrukturellen Verbindungen NaSm₃S₃[SiS₄], CuCe₃S₃[SiS₄], Ag_{0.63}Ce₃S_{2.63}Cl_{0.37}[SiS₄] und Sm₃S₂Cl[SiS₄] – Synthese, kristallstruktur und untersuchungen zur silberionendynamik. Z. Anorg. Allg. Chem. 2007. Vol. 633. P. 2445–2452. (https://doi.org/10.1002/zaac.200700356).
- Iyer A.K., Rudyk B.W., Lin X., Singh H., Sharma A.Z., Wiebe C.R., Mar A. Noncentrosymmetric rare-earth copper gallium chalcogenides RE₃CuGaCh₇ (RE = La – Nd; Ch = S, Se): An unexpected combination. J. Solid State Chem. 2015. Vol. 229. P. 150–159. (https://doi.org/10.1016/j.jssc.2015.05.016).
- Iyer A.K., Yin W., Rudyk B.W., Lin X., Nilges T., Mar A. Metal ion displacements in noncentrosymmetric chalcogenides La₃Ga_{1.67}S₇, La₃Ag_{0.6}GaCh₇ (Ch = S, Se) and La₃MGaSe₇ (M = Zn, Cd). J. Solid State Chem. 2016. Vol. 243. P. 221–231. (https://doi.org/ 10.1016/j.jssc.2016.08.031).
- Shi Y.F., Chen Y.K., Chen M.K., Wu L.M., Lin H., Zhou L.J., Chen L. Strongest second harmonic generation in the polar R₃MTQ₇ family: atomic distribution induced nonlinear optical cooperation. Chem. Mater. 2015. Vol. 27. P. 1876–1884. (https://doi.org/10.1021/ acs.chemmater.5b00177).
- Zhao H.J. Syntheses, crystal structures, and NLO properties of the quaternary sulfides RE₃Sb_{0.33}SiS₇ (RE = La, Pr). J. Solid State Chem. 2015. Vol. 227. P. 5–9. (https://doi.org/ 10.1016/j.jssc.2015.03.010).
- Zhang X., Chen W., Mei D., Zheng C., Liao F., Li Y., Lin J., Huang F. Synthesis, structure, magnetic and photo response properties of La₃CuGaSe₇. J. Alloys Compd. 2014. Vol. 610. P. 671–675. (https://doi.org/10.1016/j.jallcom.2014.05.086).
- Nanjundaswamy K.S., Gopalakrishnan J. Preparation, structure, and magnetic properties of isostructural La₃MAIS₇ and La₃MFeS₇ (M = Mg, Mn, Fe, Co, Ni or Zn). J. Solid State Chem. 1983. Vol. 49. P. 51–58. (https://doi.org/10.1016/0022-4596(83)90215-3).
- Rudyk B.W., Stoyko S.S., Mar A. Rare-earth transition-metal indium sulfides RE₃FeInS₇ (RE = La Pr), RE₃CoInS₇ (RE = La, Ce) and La₃NiInS₇. J. Solid State Chem. 2013. Vol. 208. P. 78–85. (https://doi.org/10.1016/j.jssc.2013.09.035).
- 29. Rudyk B.W., Stoyko S.S., Oliynyk A.O., Mar A. Rare-earth transition-metal gallium chalcogenides RE3MGaCh7 (M = Fe, Co, Ni; Ch = S, Se). J. Solid State Chem. 2014. Vol. 210. P. 79–88. (https://doi.org/10.1016/j.jssc.2013.11.003).
- He J., Wang Z., Zhang X., Cheng Y., Gong Y., Lai X., Zheng C., Lin J., Huang F. Synthesis, structure, magnetic and photoelectric properties of Ln₃M_{0.5}M'Se₇ (Ln = La, Ce, Sm; M = Fe, Mn; M' = Si, Ge) and La₃MnGaSe₇. RSC Adv. 2015. Vol. 5. P. 52629–52635. (https://doi.org/10.1039/C5RA05629B).

- Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Cryst. 2014. Vol. 47(2). P. 803–805. (https://doi.org/10.1107/S1600576714001058).
- Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011. Vol. 44. P. 1272–1276. (https://doi.org/ 10.1107/S0021889811038970).
- Shannon R.D. Revised effective ionic radii and systematic studied of interatomic distances in halides and chalcogenides. Acta Cryst. 1976. Vol. 39. P. 751–767. (https://doi.org/10.1107/ S0567739476001551).

SUMMARY

Oleg MARCHUK, Oleksandr SMITIUKH

CRYSTAL STRUCTURE OF SULFIDES R₃Co(Ni)_{0.5}SiS₇ (R - Ce, Pr)

Lesya Ukrainka Volyn National University, Voli Ave. 13, 43025 Lutsk, Ukraine e-mail: marchuk.oleg@vnu.edu.ua

Samples with the nominal compositions Ce(Pr)₃Co(Ni)_{0.5}SiS₇ were prepared by fusion of the high-purity elemental constituents in evacuating silica ampoules. The purity of the starting materials was better than 99.9 wt. %. The crystalline structure of sulfides Ce₃Co_{0.5}SiS₇ (a = 1.01283(6) nm; c = 0.57005(4) nm, $R_I = 0.0622$, $R_p = 0.2309$), Ce₃Ni_{0.5}SiS₇ (a = 1.01860(5) nm; c = 0.57151(4) nm, $R_I = 0.0652$, $R_p = 0.2449$), Pr₃Co_{0.5}SiS₇ (a = 1.01977(7) nm; c = 0.57237(5) nm, $R_I = 0.0418$, $R_p = 0.1861$) and Pr₃Ni_{0.5}SiS₇ (a = 1.01146(3) nm; c = 0.57004(3) nm, $R_I = 0.0548$, $R_p = 0.2206$) was investagated by X-ray powder method (CuK α radiation, $10^{\circ} \le 2\theta \le 100^{\circ}$, step scan mode with a step size of 0.05° and a counting time of 20 s per data point).

The studied compounds belong to the structure type La₃Mn_{0.5}SiS₇ (PS *hP23*, SG *P*6₃). The crystal structure of Ce₃Co_{0.5}SiS₇, Pr₃Co_{0.5}SiS₇, Ce₃Ni_{0.5}SiS₇, and Pr₃Ni_{0.5}SiS₇ compounds was calculated by using the WinCSD software package. The atoms of cerium (praseodymium) occupy the *6c* site and locate in trigonal prisms with two additional atoms. The atoms of cobalt (nickel) occupy the site 2*a*, in which they have octahedral surrounding of sulfur atoms respectively. The site occupancy factors of the atoms Co(Ni) are refined to values close to 0.50 for all the investigated compounds. In the final cycles, the occupancy factors of the Co(Ni) sites were fixed to 0.50 to satisfy charge balance requirements. The Si atoms occupy the site 2*b* and are at the center of the tetrahedral [SiS₄]. The tetrahedral series, which are formed by polyhedrals of atoms Si in a two-dimensional plane *ab* along the x-axis, is one of the most important features of the structure of Ce(Pr)₃Co(Ni)_{0.5}SiS₇ compounds. Octahedrals which are centered by Co(Ni) atoms build chains [Co(Ni)S₆]_n. The R – S atomic distances increase if we change atom Ce to Pr. The same situation is observed if we change atom Co to Ni. Basically, atoms which have bigger atomic radii lead to increasing of cell units. According to the crystal structure of the obtained Ce(Pr)₃Co(Ni)_{0.5}SiS₇ compounds, they may possess non-linear properties, and they are the prospective materials to materials science. The compounds may also possess magnetic properties as a consequence of the distribution of R³⁺ at the site 6*c* and atoms Co at the site 2*a*.

Keywords: quaternary sulfides, rare-earths, crystal structure, X-ray powder diffraction.

Стаття надійшла: 22.06.2021. Після доопрацювання: 27.07.2021. Прийнята до друку: 30.09.2021.