PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Том LVI 2019

Nikolai KOROTKIKH1, Gennady RAYENKO2, Vagiz SABEROV2, Vasyl YENYA2, Arthur KNISHEVITSKY1, Оles SHVAIKA2

1Institute of Organic Chemistry of UNAS, Murmanskaya, 5, 02094 Kyiv, Ukraine
2L.M. Litvinenko Institute of Physical Organic and Coal Chemistry of UNAS, Kharkiv road, 50, 02160 Kyiv, Ukraine

DOI: https://doi.org/10.37827/ntsh.chem.2019.56.035

DIMERIZATION ENERGIES AS AN IMPORTANT FACTOR OF CARBENE STABILITY.
III. FUSED AND NOVEL ELECTRON DONATING SYSTEMS

The dimerization energies (Edim, ESP) have been calculated using the quantum chemical DFT method (B3LYP5, 3-21G та 6-31G, RHF) to evaluate the stabilities of fused carbene systems. The structural conditions are estimated for the stabilization of benzimidazol-2-ylidenes, acenaphtho[9,10-d]imidazol-2-ylidenes, phenanthro[9,10-d]imidazol-2-ylidenes, imidazo[4,5-d]imidazol-2-ylidenes, imidazo-[2,1-c]-1,2,4-triazol-5-ylidenes, 1,2,4-triazolo[2,1-c]-1,2,4-triazol-5-ylidenes, 1,10-diazafluoren-11-ylidenes, etc. The most of fused carbenes are destabilized regarding the related monocyclic systems and persistent only under the steric shielding of the carbene center. The imidazo-[2,1-c]-1,2,4-triazol-5-ylidenes, 1,2,4-triazolo[2,1-c]-1,2,4-triazol-5-ylidenes appeared to be the most stable and should be persistent even with the usual aromatic and aliphatic substituents. The stability of N-alkylmethyl substituted benzimidazol-2-ylidenes depends strongly on their conformations. The most stable of them are ttt-conformations with almost perpendicular alkyl groups to the plane of the rings. 1,10-Diazafluoren-11-ylidene is quite stable even without substituents. Bisoxazolinoimidazol-2-ylidenes are destabilized to dimerization but kinetically persistent. Structural conditions of carbene stability with elevated electron donating properties (ylidic, mesoionic, iminocarbenes, etc.) and cyclophane carbenes are determined in comparison with well-known related compounds (CO, CS, isonitriles). Ammonium ylidic carbenes are more stable than phosphonium ylidic, the stability of mesoionic carbenes increases with increasing steric shielding of the carbene center. Cyclophane imidazol-2-ylidenes are destabilized with respect to monocyclic imidazol-2-ylidenes. Carbon monoxide (II) and isonitriles are highly stable carbenes. Carbon sulfide (II) is highly destabilized and easily polymerized. It is shown that the steric influence of the substituents affects not only the kinetic but also the thermodynamic stabilization of the carbenes.

Keywords: dimerization energies, heterocyclic carbenes, effect of structure.

References:

  1. Korotkikh N., Shvaika O. Organic reactions catalysis by carbenes and metal carbene complexes. LAP Lambert Academic Publishing. 2015. 385 p.
  2. Korotkikh N. І., Cowley А. H., Clyburne J. A.C., Robertson K. N., Saberov V. Sh., Glinyanaya N. V., Rayenko G. F., Shvaika О. P. Synthesis and properties of heteroaromatic carbenes of the imidazole and triazole series and their fused analogues. Arkivoc. 2017. Vol. 1. P. 257–355 (https://doi.org/10.24820/ark.5550190.p010.110).
  3. Korotkikh N., Rayenko G., Saberov V., Shvaika О. Dimerization energies as an important factor of carbene stability. I. Imidazol-2-ylidenes. Proc. Shevchenko Sci. Soc. Chem. Sci. 2019. Vol. 56. P. 7–22 (https://doi.org/10.37827/ntsh.chem.2019.56.007).
  4. Hammond G. A correlation of reaction rates. J. Am. Chem. Soc. 1955. Vol. 77. P. 334–338 (https://doi.org/10.1021/ja01607a027).
  5. Shi Z., Thummel R. P. Bridged Dibenzimidazolinylidenes as New Derivatives of Tetraaminoethylene. Tetrahedron Lett. 1995. Vol. 36. P. 2741–2744 (https://doi.org/10.1016/0040-4039(95)00386-Q).
  6. Shi Z., Thummel R. P. N,N-Bridged Derivatives of 2,2'-Bibenzimidazole. J. Org. Chem. 1995. Vol. 60. P. 5935–5945 (https://doi.org/10.1021/jo00123a034).
  7. Korotkikh N. I., Raenko G. F., Shvaika O. P. New approaches to the synthesis of stable heteroaromatic carbenes. Reports of the Ukrainian National Academy of Sciences. 2000. Vol 2. P. 135–140 (in Ukrainian).
  8. Korotkikh N. I., Raenko G. F., Pekhtereva T. M., Shvaika O. P., Cowley A. H., Jones J. N. Stable carbenes. Synthesis and properties of benzimidazol-2-ylidenes. Rus. J. Org. Chem. 2006. Vol. 42. P. 1822–1833 (http://dx.doi.org/10.1134/S1070428006120116).
  9. Hahn F.E., Wittenbecher L., Boese R., Blaser D. N,N'-Bis(2,2-dimethylpropyl)-benzimidazolin-2-ylidene: A Stable Nucleophilic Carbene Derived from Benzimidazole. Chem. Eur. J. 1999. Vol. 82. P. 1931–1935 (http://dx.doi.org/10.1002/(SICI)1521-3765(19990604)5:6<1931::AID-CHEM1931>3.0.CO;2-M).
  10. Hahn F.E., Wittenbecher L., Van D.L., Frolich R. Evidence for an equilibrium between an N-heterocyclic carbene and its dimer in solution. Angew. Chem. Int. Ed. 2000. Vol. 39. P. 541–544 (http://dx.doi.org/10.1002/(SICI)1521-3773(20000204)39:3<541::AID-ANIE541>3.0.CO;2-B).
  11. Vasudevan K. V., Butorac R. R., Abernethy C. D., Cowley A. H. Synthesis and coordination compounds of a bis(imino)acenaphthene (BIAN)-supported N-heterocyclic carbene. Dalton Trans. 2010. Vol. 39. P. 7401–7408 (http://dx.doi.org/10.1039/C0DT00278J).
  12. Weiss R., Reichel S., Handtke M., Hampel F. Generation and Trapping Reactions of a Formal 1:1 Complex between Singlet Carbon and 2,2'-Bipyridine. Angew. Chem. Int. Ed. 1998. Vol. 37. P. 344–347 (https://doi.org/10.1002/(SICI)1521-3773(19980216)37:3<344::AID-ANIE344>3.0.CO;2-H).
  13. Nonnenmacher M., Kunz D., Rominger F., Oeser T. First examples of dipyrido[1,2-c:2′,1′-e]imidazolin-7-ylidenes serving as NHC-ligands: Synthesis, properties and structural features of their chromium and tungsten pentacarbonyl complexes. J. Organomet. Chem. 2005. Vol. 690. P. 5647–5653 (http://dx.doi.org/10.1016/j.jorganchem.2005.07.033).
  14. Nonnenmacher M., Kunz, D., Rominger F. Synthesis and Catalytic Properties of Rhodium(I) and Copper(I) Complexes Bearing Dipyrido-Annulated N-Heterocyclic Carbene Ligands. Organometallics. 2008. Vol. 27. P. 1561–1568 (http://dx.doi.org/10.1021/om701196c).
  15. Nonnenmacher M., Kunz D., Rominger F., Oeser T. X-ray crystal structures of 10p- and 14p-electron pyrido-annelated N-heterocyclic carbenes. Chem. Commun. 2006. P. 1378–1380 (http://dx.doi.org/10.1039/B517816A).
  16. Glorius F., Altenhoff G., Goddard R., Lehman C. X-ray crystal structures of 10p- and 14p-electron pyrido-annelated N-heterocyclic carbenes. Chem. Commun. 2002. P. 2704–2705 (http://dx.doi.org/10.1039/B208045A).
  17. Altenhoff G., Goddard R., Lehman C., W. Glorius F. An N-Heterocyclic Carbene Ligand with Flexible Steric Bulk Allows Suzuki Cross-Coupling of Sterically Hindered Aryl Chlorides at Room Temperature. Angew. Chem. Int. Ed. 2003. Vol. 42. P. 3690–3693 (http://dx.doi.org/10.1002/anie.200351325).
  18. Altenhoff G., Goddard R., Lehmann C. W., Glorius F. Sterically Demanding, Bioxazoline-Derived N-Heterocyclic Carbene Ligands with Restricted Flexibility for Catalysis. J. Am. Chem. Soc. 2004. Vol. 126. P. 15195–15201 (http://dx.doi.org/10.1021/ja045349r).
  19. Wurtz S., Glorius F. Surveying Sterically Demanding N-Heterocyclic Carbene Ligands with Restricted Flexibility for Palladium-catalyzed Cross-Coupling Reactions. Acc. Chem. Res. 2008. Vol. 41. P. 1523–1533 (http://dx.doi.org/10.1021/ar8000876).
  20. Taton T. A., Chen P. A stable tetraazafulvalene. Angew. Chem. Int. Ed. 1996. Vol. 35. P. 1011–1013 (http://dx.doi.org/10.1002/anie.199610111).
  21. Cetinkaya E., Hitchcock P. B., Kucuukbay H., Lappert M. F., Al-Juaid S. Carbene complexes. XXIV. Preparation and characterization of two enetetramine-derived carbenerhodium( I) chloride complexes RhCI(LR)3 and [RhCl(COD)LR] (LR = dCN(Me)(CH)4Me-o) and the preparation and X-ray structures of the enetetramine L2R and its salt [L2R][BF4]. J. Organomet. Chem. 1994. Vol. 481. P. 89–95 (https://doi.org/10.1016/0022-328X(94)85013-5).
  22. Kamplane J.W., Bielawski C. Dynamic covalent polymers based upon carbene dimerization. Chem. Commun. 2006. P. 1727–1729 (https://doi.org/10.1039/b518246h).
  23. Kamplane J.W., Lynch V.M., Bielawski C. Synthesis and Study of Differentially Substituted Dibenzotetraazafulvalenes. Org. Lett. 2007. Vol. 9. P. 5401–5404 (https://doi.org/10.1021/ol702230r).
  24. Marichev К.A. Cand. Chem. Sci. Thesis, Donetsk, 2012, 172 p.
  25. Marichev К.A., Korotkikh N.І., Kiselyov A.V., Papayanina E.S., Dudarenko G.V., Shvaika O.P. Synthesis and transformations of macrocyclic carbenoids of an azole series. Scientific proceedings of Donetsk National Technical University. Ser.: chemistry and chemical technology. 2012. Vol. 18. P. 100–107.
  26. Korotkikh N.І., Kiselyov A.V., Rayenko G.F., Opeida I.O., Shvaika О.P. Comparative estimation of stabilization of conjugated and aromatic compounds via enthalpies of isodesmic reactions. Proceedings of the T.G. Shevchenko scientific community, Ser. Chemistry. 2008. Vol. 21. P. 7–63 (in Ukrainian) (http://dspace.nbuv.gov.ua/handle/123456789/74094).
  27. Wilson R. W., Penzias A. A., Wannier P. G., Linke R. A. Isotopic abundances in interstellar carbon monosulfide. Astrophys. J. 1976. Vol. 204. P. L135–L137 (https://doi.org/10.1086/182072).
  28. Chou J.-H., Rauchfuss T.B. Solvatothermal Routes to Poly(carbon monosulfide)s Using Kinetically Stabilized Precursors. J. Am. Chem. Soc. 1997. Vol. 119. P. 4537–4538 (https://doi.org/10.1021/ja970042w).

How to Cite

Korotkikh N., Rayenko G., Saberov V., Yenya V., Knishevitsky A., Shvaika О. DIMERIZATION ENERGIES AS AN IMPORTANT FACTOR OF CARBENE STABILITY. III. FUSED AND NOVEL ELECTRON DONATING SYSTEMS Proc. Shevchenko Sci. Soc. Chem. Sci. 2019 Vol. LVI. P. 35-44.

Download the pdf