PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Архів / Том LIII 2018

Volodymyr LEVYTSKYY, Volodymyr BABIZHETSKYY, Pavlo DEMCHENKO, Bogdan KOTUR

Ivan Franko National University of Lviv, Kyryla and Mefodiya Str., 6, UA-79005 Lviv, Ukraine

DOI: https://doi.org/10.37827/ntsh.chem.2018.53.007

SYSTEM Tb–Ni–C AT 800 °C. CRYSTAL AND ELECTRONIC STRUCTURE OF TbNiC2 SINGLE CRYSTAL

Phase equilibria at 800 °C in the concentration part up to 33.3 at. % Tb of the Tb–Ni–C system were determined. Three ternary compounds Tb11Ni60C6, Tb2Ni5C3 and TbNiC2 have been found to occur at thermodynamically equilibrium conditions. Crystal structure of TbNiC2 was refined by means of a single crystal X-ray diffraction method: structure type CeNiC2, space group Amm2, a = 3.6010(7) Å, b = 4.5110(9) Å, c = 6.046(1) Å, R1 = 2.2 %, wR2 = 5.2 %. Real-space chemical bonding analysis indicates the TbNiC2 compound represents a unique series of ternary carbide structures stabilized by complex interaction of different types of chemical bonding.

Key words: phase equilibria, single crystal, crystal structure, chemical bonding.

References:

    1. Su D. S., Centi G. A perspective on carbon materials for future energy application. J. Energy Chem. 2013. Vol. 22. P. 151–173. (https://doi.org/10.1016/S2095-4956(13)60022-4).
    2. Babizhetskyy V., Kotur B., Levytskyy V., Michor H. Chapter 298: Alloy systems and compounds containing rare earth metals and carbon, in: J.-C.G. Bünzli, V.K. Pecharsky (Eds.), Handbook on the Physics and Chemistry of Rare Earths Including Actinides, Amsterdam: North-Holland, 2017. pp. 1–263. (https://doi.org/10.1016/bs.hpcre.2017.09.001)
    3. Putyatin A. A. Interactions in systems Gd (Tb, Dy, Ho)-Ni-C under pressures of 1 atm, 4 and 6 GPa. Izv. Akad. Nauk SSSR. Metally 1991. Vol. 3. P. 204–208. (in Russian). TR: Russ. Metall. 1991. Vol. 3. P. 201–206.
    4. Akselrud L., Grin Y. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 2014. Vol. 47. P. 803–805. (https://doi.org/10.1107/S1600576714001058).
    5. Stoe WinXPOW (Version 2.1). Stoe & Cie GmbH, Darmstadt, Germany, 2004.
    6. Farrugia L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012. Vol. 45. P. 849–854. (https://doi.org/10.1107/S0021889812029111)
    7. Sheldrick G. M. A short history of SHELX. Acta Crystallogr. 2008. Vol. A64. P. 112–122. (https://doi.org/10.1107/S0108767307043930)
    8. Spek A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009. Vol. D65. P. 148–155. (https://doi.org/10.1107/S090744490804362X)
    9. The Elk FP-LAPW Code, available from: http://elk.sourceforge.net
    10. Perdew J. P., Ruzsinszky A., Csonka G. I., Vydrov O. A., Scuseria G. E., Constantin L. A., Zhou X., Burke K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008. Vol. 100. P. 136406(1–4). (https://doi.org/10.1103/PhysRevLett.100.136406).
    11. Demchenko P. Chemical bonding in alumogermanides of erbium and nickel. Visn. Lviv Univ. Series Chem. 2016. Is. 57(1). P. 97–104.
    12. Kohout M. DGrid (Version 4.6), Radebeul, Germany, 2011.
    13. Baranov A. I., Kohout M. Topological analysis of real space properties for the solid-state full-potential APW DFT method. J. Phys. Chem. Solids 2010. Vol. 71. P. 1350–1356. (https://doi.org/10.1016/j.jpcs.2010.06.005).
    14. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011. Vol. 44. P. 1272–1276. (https://doi.org/10.1107/S0021889811038970).
    15. Ayachit U. The ParaView guide: A parallel visualization application. Kitware, 2015, available from: http://www.paraview.org.
    16. Levytskyi V., Babizhetskyy V., Kotur B., Demchenko P., Isnard O., Dovgaliuk I. New compounds in the Tb–Ni–C system. Book Abstr. XXI Internat. Seminar Phys. Chem. Solids (June 10–13, 2018). Częstochowa, Poland, 2018. P. 36.
    17. Levytskyi V., Isnard O., Babizhetskyy V., Kotur B. Synthesis, crystal structure and magnetic properties of R11Ni60C6 (R = Tb, Dy) compounds. J. Phys. Chem. Solids 2018. Vol. 122. P. 189–197. (https://doi.org/10.1016/j.jpcs.2018.06.010).
    18. Atoji M. Magnetic and crystal structures of CeC2, PrC2, NdC2, TbC2, and HoC2 at low temperatures. J. Chem. Phys. 1967. Vol. 46. P. 1891–1901. (https://doi.org/10.1063/1.1840950).
    19. Paccard D., Pauthenet R. Propriétés cristallographiques et magnétiques des alliages de formule TNi3, dans laquelle T désigne un métal de terre rare ou l’yttrium. C. R. Seances Acad. Sci., Ser. B. 1967. Vol. 264. P. 1056–1059.
    20. Buschow K. H. J., van der Goot A. S. The crystal structure of rare-earth nickel compounds of the type R2Ni7. J. Less-Common Met. 1970. Vol. 22. P. 419–428. (https://doi.org/10.1016/0022-5088(70)90129-3).
    21. Vokhmyanin A. P., Lee S., Jang K.-H., Podlesnyak A. A., Keller L., Prokeš K., Sikolenko V. V., Park J.-G., Skryabin Yu. N., Pirogov A. N. Commensurate–incommensurate phase transition in TbNi5. J. Magn. Magn. Mater. 2006. Vol. 300. P. e411–e414. (https://doi.org/10.1016/j.jmmm.2005.10.179)
    22. Buschow K. H. J. The crystal structures of the rare-earth compounds of the form R2Ni17, R2Co17 and R2Fe17. J. Less-Common Met. 1966. Vol. 11. P. 204–208. (https://doi.org/10.1016/0022-5088(66)90006-3).
    23. Jeitschko W., Gerss M. H. Ternary carbides of the rare earth and iron group metals with CeCoC2- and CeNiC2-type structure. J. Less-Common Met. 1986. Vol. 116. P. 147–157. (https://doi.org/10.1016/0022-5088(86)90225-0).

How to Cite

Levytskyy V., Babizhetskyy V., Demchenko P., Kotur B. SYSTEM Tb–Ni–C AT 800 °C. CRYSTAL AND ELECTRONIC STRUCTURE OF TbNiC2 SINGLE CRYSTAL Proc. Shevchenko Sci. Soc. Chem. Sci. 2018 Vol. LIII. P. 7-15.

Download the pdf