PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LX 2020

Іlоna KARPENKO1, Galyna MIDYANA1, Оlena KARPENKO1, Igor SEMENIUK1, Stepan MIDYANYY2, Olena PAL’CHIKOVA3

1Department of Physical Chemistry of Fossil Fuels of the Institute of Physical-Organic Chemistry and Coal Chemistry named after L. M. Lytvynenko of the National Academy of Sciences of Ukraine, Naukova St. 3a, 79060 Lviv, Ukraine
e-mail: gmidyana@gmail.com.

2Stepan Gzhytskyy National University of Veterinary Medicine and Biotechnologies Pekarska St. 50, 79000 Lviv, Ukraine

3Institute of Geology and Geochemistry of Fossil Fuels of the National Academy of Sciences of Ukraine, Naukova St. 3a, 79060 Lviv, Ukraine

DOI: https://doi.org/10.37827/ntsh.chem.2020.60.007

APPLICATION OF EXTRACTION METHOD FOR ISOLATION OF BIOGENIC SURFACE-ACTIVE RHAMNOLIPIDS

The priority task of modern biotechnology is development of the rational technologies for the microbial synthesis of practically important products. Among these products, a significant place belongs to surfactants (biosurfactants), which are widely used in many sectors of the economy. The most problematic stage of the biosurfactants production is isolation from the post fermentative cultural liquid of bacteria-producers. Improving the efficiency of the biosurfactants production is highly dependent on rational approaches to the target products isolation. In this regard, there is an increasing need for rational, scientifically substantiated methods for their isolation and purification. Therefore, the aim of the presented work was to determine the optimal extractants for the isolation of rhamnolipid surfactants – metabolites of bacteria of Pseudomonas sp. PS-17 strain. For this purpose, the extraction process of rhamnolipids from the post fermentative cultural liquid supernatant has been investigated. The optimal extractants were selected among 13 organic solvents of different nature. Processing of the obtained experimental data by the method of multi-parameter equations of linearity of free energies (modified Koppel-Palm equation) made it possible to establish the relationship between the physicochemical properties of the extractants and amounts of the biosurfactants which were isolated from cultural liquid supernatant. It was shown that the data on the rhamnolipids extraction are adequately associated with the physicochemical characteristics of the solvents using a six-parameter linear equation. It was determined that the polarizability and molar volume are the main properties of solvents that affect the extraction process. The best extractants for the rhamnolipids isolation from cultural liquid supernatant of the Pseudomonas sp. PS-17 strain are the ethers. It can be explained by the presence of a lone pair of the electrons of oxygen in its molecule. The obtained results of the study are of scientific interest for isolation of the important and perspective biotechnological products – surface-active substances.

Keywords: biosurfactants, rhamnolipids, extraction, multiparameter equations, solvents

References:

    1. Banat M., Franzetti A., Gandolfi I., Bestetti G., Martinotti M., Fracchia L., Smyth T., Marchant R. Microbial Biosurfactants Production, Applications and Future Potential. Applied Microbiology and Biotechnology. 2010. Vol. 87(2). P. 427–444. (https://doi.org/10.1007/s00253-010-2589-0).
    2. Kim H. S., Jeon J. W., Kim S. B., Oh H. M., Kwon T. J. and Yoon B. D. Surface and physio-chemical properties of a glycolipid biosurfactant, mannosylerythritol lipids, from Candida antarctica. Biotechnol. Lett. 2002. Vol. b24. P.1637–1641. (https://doi.org/10.1023/A:1020309816545).
    3. Pacwa-Plociniczak M., Plaza G. A., Piotrowska-Seget Z., Cameotra S. S. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 2011/ Vol. 12. P. 633–654. (https://doi.org/10.3390/ijms12010633).
    4. Muthusamy K., Gopalakrishnan S., Kochupappy R.T., Sivachidambaram P. Biosurfactants: Properties, commercial production and application. Current Science 2008. Vol. 94(6). P. 736–747.
    5. Karpenko O. V., Makitra R. G., Pal’chikova O. Ya. Optimization of the extraction process of biosurfactants synthesized by bacteria of the genus Rhodococcus. Nauch. Tr. Donetsk. Nats. Univ., Ser. Khim and Khim. Tekhnol. 2011. Vol. 17(187). P. 124–128.
    6. Karpenko O. V., Martinyuk N. V., Shul’ga O. N., Pokin’broda T. Ya., Vil’danova R. I., Shcheglova N. S. Surface active biopreparation. Ukraine Patent N 71792 A.15. 2004. Bull. Izobret., 2004. N12. P.4.31.
    7. Karpenko O., Prystay M., Datsko B., Gafijchuk G., Nogіna T. Optimization of biosynthesis of surfactants and exopolysaccharides by strain Gordonia rubripertincta UKM Ас-122 using mathematical methods. Biotechnology. 2011. Vol. 4(5). P. 39–44.
    8. Erokhin V. A., Pokin’broda T. Ya., Karpenko O. V. Surfactants based on the biosynthesis products of the strain Pseudomonas sp. PS-17. Nauch. Tr. Donetsk. Nats. Univ., Ser. Khim and Khim. Tekhnol. 2008. Vol 134(10). P. 111–117.
    9. Hoover R. R., Acree W. E., Abraham B. H. Correlation of the solubility behavior of crystal¬line 1-Nitronaphtalene in organic solvent with the Abraham solution parameter model. J. Solut. Chem. 2005. Vol. 34(10). P. 1121–1133. (https://doi.org/10.1007/s10953-005-7691-2).
    10. Makitra R. G., Prystanskyy R. Ye., Flyunt R. I. The effect of solvent properties on the solubility of fullerene C60. J. Org. Chem. 2003. Vol. 73(8). P. 1299–1304 (in Russian) (https://doi.org/10.1023/B:Rugc.0000007645.77987.b4).
    11. Makitra R. G., Turovsky A. A., Zaikov G. E. Correlation Analysis in Chemistry of Solutions, Utrecht: Boston VSP. 2004. 320 p. (ISBN-13:9789067644068) (https://doi.org/10.1201/b12185).
    12. Bryck D. V., Makitra R. G., Pal’chikova O. Ya. Application of the regression analysis method to generalize data on solubility of pitch. Chemistry of solid fuel. 2006. Vol. 6. P. 26–36 (in Russian).
    13. Karpenko I. V., Pokin’broda T. Ya., Makitra R. G., Pal’chikova O. Ya. Optimal methods of isolation of biogenic rhamnolipid surfactants. J. Gen. Chem. 2009. Vol. 79(12). P. 2637 – 2640. (https://doi.org/10.1134/S1070363209120135).
    14. Karpenko I. V., Midyana G. G., Karpenko O. V., Makitra R. G., Pal’chikova O. Ya. Extraction of Biogenic Rhamnolipid Surfactants. J. Gen. Chem. 2014. Vol. 84(7). P. 1172 – 1175 (in Russian). (https://doi.org/10.1134/S1070363214070202).
    15. Koretska N. I., Midyana G. G., Karpenko O. V. Optimization of Trehalose Lypids Extraction – Metabolites of Rhodococcus erythropolis AU-1. Innov.Biosyst Bioeng. 2018. Vol. 2(4). P. 246–251. (https://doi.org/10.20535/ibb.2018.2.4.148935).
    16. Koppel I. A., Palm V. A. Advances in Linear Free Energy Relationships. London; New York: Plenum Press. 1972. P. 203. (ISBN 978-1-4615-8660-9). (https://doi.org/10.1007/978-1-4615-8660-9_5).
    17. Reichardt C. Solvent and Solvent Effects in Organic Chemistry. Weinheim: Wiley-VCH. 2003. P. 199. ISBN:9783527324736.
    18. Abboud J. L. M., Notario R. Critical compilation of scales of solvent parameters. I. Pure, non-hydrogen bond donor solvents. Pure Appl. Chem. 1999. Vol. 71(4). P. 645. (https://doi.org/10.1351/pac199971040645).
    19. Makitra R. G., Pirig Ya. N., Kyveluk R. B. The most important characteristics of solvents used in the LFE equations. Available from VINITI.Moscov. 1986. № 628-В86.
    20. Recommendations for reporting the results of correlation analysis in chemistry using regression analysis. Quant. Struct. Act. Relat. 1985. Vol. 4(1). P. 29.

How to Cite

Karpenko I., Midyana G., Karpenko O., Semeniuk I., Midyanyy S., Pal’chikova O. APPLICATION OF EXTRACTION METHOD FOR ISOLATION OF BIOGENIC SURFACE-ACTIVE RHAMNOLIPIDS Proc. Shevchenko Sci. Soc. Chem. Sci. 2020 Vol. LX. P. 7-13.

Download the pdf