PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LX 2020

Мykhaylo YATSYSHYN, Kristina VLAD, Roman SERKYZ, Oleksandr RESHETNYAK

Ivan Franko Lviv National University, Kyryla and Mefodiya Str., 6, 79005 Lviv, Ukraine е-mail: mykhaylo.yatsyshyn@lnu.edu.ua

DOI: https://doi.org/10.37827/ntsh.chem.2020.60.136

POLYPYRROLE DEPOSITION ON THE SURFACE OF Al87Ni8Y5 AMORPFOUS ALLOYS IN POTENTIODYNAMIC MODE

Polypyrrole films were deposited on the surface both of the outer and contact sides of the Al87Ni8Y5 amorphous alloy electrodes by potentiodynamic oxidation of 0.1 M pyrrole in 0.5 M H2SO4 aqueous solution. It was found that the oxidation of pyrrole on Al87Ni8Y5 amorphous alloy electrodes occurs comparatively easy and already during the first cycle of potential scanning a nanofilm of polypyrrole is formed. The formation of polypyrrole film essentially accelerates during following cycles of potential scanning.
Cyclic voltammogramms has been analyzed and the process of electrochemical oxidation of pyrrole and redox transformations of polypyrrole at these electrodes is described. It is shown that the difference in film topology is due to the surface topology of electrodes, which determines stability of surface oxide films on these surfaces. Studies of the electrode surface topology and also morphology, structure and composition of polypyrrole films produced on an amorphous alloy electrode were carried out using Fourier-transform infrared spectro¬sco¬py with attenuated total reflection (FTIR-ATR), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It has been confirmed using FTIR analysis that the films deposited on the surface of the Al87Ni8Y5 electrodes corespond to polypyrrole which are in the form of hydrosulfate salt. The analysis of the received electron microscopy images shown that polypyrrole films produced both on the contact and outer sides of the working electrodes has developed surface topology, which depends on surface quality and nature of amorphizing additive in electrode alloy.
In addition, it is likely that a significant number of aggregates of polypyrrole macromolecules are formed in the solution, which further play the role of electrodes, where the oxidation of the corresponding monomer from its aqueous solution takes place.
The results of EDX microanalysis shown presence in the polymeric films of small amount of metal impurities (in the form of sulfates mainly), which formed in the result of the corrosion of working electrode.

Keywords: pyrrole, amorpfous alloys, electrochemical oxidation, polypirrole, structure..

References:

    1. Inzelt G. Recent advances in the field of conducting polymers. J. Sol. St. Electrochem. 2017. Vol. 21(7). P. 1965–1975. (https://doi.org/10.1007/s10008-017-3611-6).
    2. Guimard N. K., Gomez N., Schmidt C. E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 2007. Vol. 32(8–9). P. 876–921. (https://doi.org/10.1016/j.progpolymsci.2007.05.012).
    3. Li M., Yuan J., Shi G. Electrochemical fabrication of nanoporous polypyrrole thin films. Thin Solid Films. 2008. Vol. 516. P. 3836–3840. (https://doi.org/10.1016/j.tsf.2007.06.175).
    4. Singh M., Kathuroju P. K., Jampana N. Polypyrrole based amperometric glucose biosensors. Sens. Actuat. B. 2009. Vol. 143. P. 430–443. (https://doi.org/10.1016/j.snb.2009.09.005).
    5. Jain R., Jadon N., Pawaiya A. Polypyrrole based next generation electrochemical sensors and biosensors: a review. Trends Anal. Chem. 2017. Vol. 97. P. 363–373. (https://doi.org/10.1016/j.trac.2017.10.009).
    6. Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. Chem. Pap. 2020. Vol. 74. P. 1–54. (https://doi.org/10.1007/s11696-019-00982-9).
    7. Song E., Choi J.-W. Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing. Nanomater. 2013. Vol. 3. P. 498–523. (https://doi.org/10.3390/nano3030498).
    8. Joulazadeh M., Navarchian A. H. Polypyrrole nanotubes versus nanofibers: a proposed mechanism for predicting the final morphology. Synth. Met. 2015. Vol. 199. P. 37–44. (https://doi.org/10.1016/j.synthmet.2014.10.036).
    9. Sapurina I., Li Y., Alekseeva E., Bober P., Trchová M., Morávková Z., Stejskal J. Polypyrrole nanotubes: the tuning of morphology and conductivity. Polymer. 2017. Vol. 113, P. 247–258. (https://doi.org/10.1016/j.polymer.2017.02.064).
    10. Stejskal J. Strategies towards the control of one-dimensional polypyrrole nanomorphology and conductivity. Polym. Int. 2018. Vol. 67. P. 1461–1469. (https://doi.org/10.1002/pi.5654).
    11. Stejskal J., Trchová M. Conducting polypyrrole nanotubes: a review. Chem. Papers. 2018. Vol. 72(7). P. 1563–1595. (https://doi.org/10.1007/s11696-018-0394-x).
    12. Sadki S., Schottland P., Brodie N., Sabouraud G. The mechanisms of pyrrole Electro-polymerization. Chem. Soc. Rev. 2000. Vol. 29(5). P. 283–293. (https://doi.org/10.1039/a807124a).
    13. Carquigny S., Segut O., Lakard B., Lallemand F., Fievet P. Effect of electrolyte solvent on the morphology of polypyrrole films: Application to the use of polypyrrole in pH sensors. Synth. Met. 2008. Vol. 158. P. 453–461. (https://doi.org/10.1016/j.synthmet.2008.03.010).
    14. Paul S., Amalraj F., Radhakrishnan S. CO sensor based on polypyrrole functionalized with iron porphyrin. Synth. Met. 2009. Vol. 159. P. 1019–1023. (https://doi.org/10.1016/j.synthmet.2009.01.018).
    15. Zhang L., Meng F., Chen Y., Liu J., Sun Y., Luo T., Li M., Liu J. A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays. Sens. Actuat. B. 2009. Vol. 142(1). P. 204–209. (https://doi.org/10.1016/j.snb.2009.07.042).
    16. Liu L., Zhao Y., Zhou Q., Xu H., Zhao C., Jiang Z. Nano-polypyrrole supercapacitor arrays prepared by layer-by-layer assembling method in anodic aluminum oxide templates. J. Solid State Electrochem. 2007. Vol. 11(1). P. 32–37. (https://doi.org/10.1007/s10008-005-0063-1).
    17. Zhang J., Liu Y., Guan H. J., Zhao Y., Zhanget B. Decoration of nickel hydroxide nano-particles onto polypyrrole nanotubes with enhanced electrochemical performance for super-capacitors. J. Alloys Comp. 2017. Vol. 721. P. 731–740. (https://doi.org/10.1016/j.jallcom.2017.06.061).
    18. Otero T. F., Cortés M. T. Artificial Muscles with Tactile Sensitivity. Adv. Mater. 2003. Vol. 15(3). P. 279–282. (https://doi.org/10.1002/adma.200390066).
    19. Küttel C., Stemmer A., Wei X. Strain response of polypyrrole actuators induced by redox agents in solution. Sens. Actuat. B. 2009. Vol. 141(2). P. 478–484. (https://doi.org/10.1016/j.snb.2009.06.044).
    20. Li M., Yuan J., Shi G. Electrochemical fabrication of nanoporous polypyrrole thin films. Thin Solid Films. 2008. Vol. 516. P. 3836–3840. (https://doi.org/10.1016/j.tsf.2007.06.175).
    21. Tüken T., Arslan G., Yazıcı B., Erbil M. The preparation of polypyrrole coated brass and copper electrodes for electrocatalysis. Prog. Org. Coat. 2004. Vol. 49(2). P. 153–159. (https://doi.org/10.1016/j.porgcoat.2003.09.006).
    22. Sapurina I., Stejskal J., Šeděnková I. et al. Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues. Synth. Met. 2016. Vol. 214. P. 14–22. (https://doi.org/10.1016/j.synthmet.2016.01.009).
    23. Earley S. T., Dowling D. P., Lowry J. P., Breslin C. B. Formation of adherent polypyrrole coatings on Ti and Ti–6Al–4V alloy. Synth. Met. 2005. Vol. 148(2). P. 111–118. (https://doi.org/10.1016/j.synthmet.2004.09.020).
    24. Redondo M. I., Breslin C. B. Polypyrrole electrodeposited on copper from an aqueous phosphate solution: Corrosion protection properties. Corr. Sci. 2007. Vol. 49. P. 1765–1776 (https://doi.org/10.1016/j.corsci.2006.10.014).
    25. Trueba M., Trasatti S. P. Pyrrole-based silane primer for corrosion protection of commercial Al alloys Part I: Synthesis and spectroscopic characterization. Progr. Org. Coat. 2009. Vol. 66(3). P. 254–264. (https://doi.org/10.1016/j.porgcoat.2009.08.004).
    26. Flamini D. O., Saidman S. B. Electrodeposition of polypyrrole onto NiTi and the corrosion behaviour of the coated alloy. Corr. Sci. 2010. Vol. 52(1). P. 229–234. (https://doi.org/10.1016/j.corsci.2009.09.008).
    27. Dalmoro V., Cedron S., Azambuja D. S., Castagno K. R. L. Polypyrrole Film Doped with Corrosion-Inhibitors Electropolymerized on AA 1100. Mat. Res. 2019. Vol. 22. e20180919. (
    https://doi.org/10.1590/1980-5373-mr-2018-0919).
    28. Pickup N. L., Shaporo J. S., Wong D. K. Y. Extraction of mercury and silver into base–acid treated polypyrrole films: a possible pollutant control technology. J. Polym. Res. 2001. Vol. 8(3). P. 151–157. (
    https://doi.org/10.1007/s10965-006-0145-5).
    29. Tramontina J., Machado G., Azambuja D. S. et al. Removal of Cd2+ from aqueous solutions onto polypyrrole coated reticutated vitreous electrodes. Mater. Res. 2001. Vol. 4(3). P. 195–200. (
    https://doi.org/10.1590/S1516-14392001000300009).
    30. Otero T. F., Costa S. O., Ariza M. J., Marquez M. Electrodepositon of Cu on deeply reduced polypyrrole electrodes at very high cathodic potentials. J. Mater. Chem. 2005. Vol. 15(16). P. 1662–1667. (
    https://doi.org/10.1039/B418075E).
    31. Alatorre M. A., Gutiérrez S., Pramo U., Ibanez J. G. Reduction of hexavalent chromium by polypyrrole deposited on different carbon substrates. J. Appl. Electrochem. 1998. Vol. 28(5). P. 551–557. (
    https://doi.org/10.1023/a:1003281631291).
    32. Rodrigueg F. J., Gutierrez S., Ibanez J. G. et al. The efficiency of toxic chromate reduction by a conducting polymer (polypyrrole): influence of electropolymerization condition. Environ. Sci. Technol. 2000. Vol. 34(10). P. 2018–2023. (
    https://doi.org/10.1021/es990940n).
    33. Conroy K. G., Breslin C. B. Reduction of hexavalent chromium at a polypyrrole-coated aluminium electrode: Synergistic interactions. J. Appl. Electrochem. 2004. Vol. 34. P. 191–195. (
    https://doi.org/10.1023/B:JACH.0000009924.52188.f6).
    34. Tian Y., Yang F. Reduction of hexavalent chromium by polypyrrolr-modified steel mesh electrode. J. Cleaner Prod. 2007. Vol. 15. P. 1415–1418. (
    https://doi.org/10.1016/j.jclepro.2006.04.001).
    35. Tian Y., Huang L., Zhou X., Wu C. Electroreduction of hexavalent chromium using a polypyrrole-modified electrode under potentiostatic and potentiodynamic conditions. J. Hazard. Mater. 2012. Vol. 225–226. P. 15–20. (https://doi.org/10.1016/j.jhazmat.2012.04.057).
    36. Haque M. M., Smith W. T., Wong D. K. Y. Conducting polypyrrole films as a potential tool for electrochemical treatment of azo dyes in textile wastewaters. J. Hazard. Mater. 2015. Vol. 283. P. 164–170. (https://doi.org/10.1016/j.jhazmat.2014.07.038).
    37. Boichyshyn L. M., Hertsyk О. М., Kovbuz М. О. Morphology, structure and properties of amourphous alloys doped with REM: monograph – Lviv: Ivan Franko National University of Lviv, 2019. 242 р.
    38. Boichyshyn L. M., Hertsyk O. M., Kovbuz M. O. Thermal modification of amorphous metal alloys: nanostructuring and properties. Mississauga, Ontario: Library and Archives Canada Cataloguing in Publication, Nova Printing Inc., 2019. 138 р. (ISBN: 978-0-9950471-6-7).
    39. Yatsyshyn M. M., Boichyshyn L. M., Demchyna I. I., Nosenko V. K. Electrochemical Oxidation of Aniline on the Surface of an Amorphous Metal Alloy Al87Ni8Y5. Russ. J. Electrochem. 2012. Vol. 48(5). P. 502–508. (https://doi.org/10.1134/S1023193512050138).
    40. Yatsyshyn М. М., Demchyna І. І., Mudry S. I., Serkiz R. Ya. Morphology of the deposited electrochemically in potentiodynamic mode on the surface of Al87Ni8(REE)5 amorphous metallic alloys polyaniline film. Phis. Cem. Sol. State. 2013. No 3. P. 593–601.
    41. Mahmud H. N. M. E., Kassim A., Zainal Z., Yunus W. M. M. Fourier Transform Infrared Study of Polypyrrole-Poly(vinyl alcohol) Conducting Polymer Composite Films: Evidence of Film Formation and Characterization. J. Appl. Polym. Sci. 2006. Vol. 100(5). P. 4107–4113. (https://doi.org/10.1002/app.23327).
    42. Arenas M. A., Bajos L. G., de Damborenea J. J., Oćon P. Synthesis and electrochemical evaluation of polypyrrole coatings electrodeposited onto AA-2024 alloy. Progr. Org. Coat. 2008. Vol. 62(1). P. 79–86. (https://doi.org/10.1016/j.porgcoat.2007.09.019).
    43. Iroh J. O., Zhu Y., Shah K. et al. Electrochemical synthesis: a novel technique for processing multi-functional coatings. Prog. Org. Coat. 2003. Vol. 47(3-4). P. 365–375. (https://doi.org/10.1016/j.porgcoat.2003.07.006).
    44. Joseph S., McClure J. C., Sebastian P. J., Moreira J., Valenzuela E. Polyaniline and polypyrrole coatings on aluminum for PEM fuel cell bipolar plates. J. Pow. Sour. 2007. Vol. 177(1). P. 161–166. (https://doi.org/10.1016/j.jpowsour.2007.09.113).

How to Cite

Yatsyshyn M., Vlad K., Serkiz R., Reshetnyak O. POLYPYRROLE DEPOSITION ON THE SURFACE OF Al87Ni8Y5 AMORPFOUS ALLOYS IN POTENTIODYNAMIC MODE Proc. Shevchenko Sci. Soc. Chem. Sci. 2020 Vol. LX. P. 136-147.

Download the pdf