Olena AKSIMENTYEVA-KRASNOPOLSKA
Franko National University of Lviv, Kyryla i Mefodiy Str., 6, 79005 Lviv, Ukraine e-mail: olena.aksimentyeva@lnu.edu.ua
DOI: https://doi.org/10.37827/ntsh.chem.2022.70.043
ORGANOMETALLIC MAGNETS BASED ON COMPLEXES OF IRON WITH 1-NITROSO-2-NAPHTHOL
Providing macroscopic magnetism in organic materials is a very complex but quite promising scientific problem. The need to create an organic magnet is due to a number of expected advantages, such as lightness, transparency, flexibility, ability to switch under the influence of light (magneto-optics), or chemical influences (sensors), creation of modern toners for digital printing, materials for chemical power sources etc. To understand the mechanism of biological processes, in particular, human thinking and DNA functioning may help to study the state of spin glass, biomagnetism, the mechanism of action of paramagnetic probes in living tissues and others. In the present paper the peculiarities of the structure and magnetic behavior of the iron complex with 1-nitroso-2-naphthol Na[Fe(C10H6(NO2)3] have been studied. The powder X-ray diffraction method determined that the crystal structure of the complex is monoclinic with the space group P2/1. According to cyclic voltammetry, the electrochemical behavior of the complex anion Fe(C10H6(NO2)3] is characteristic of reversible electrochemical systems with one electron transfer. Optical absorption bands are observed in the electronic spectra of the complex at 389, 690, and 763 nm. The dependences of the magnetic susceptibility of the complex on the temperature, frequency and magnetic field strength in the temperature range 1.5–200 K in the external magnetic field up to 90 kE and in the frequency range from 95 to 2000 Hz are obtained and analyzed. At low temperatures, the peculiarities of magnetic behavior characteristic of the state of spin glass are revealed. The EPR spectrum of the complex is a superposition of two lines, the behavior of which is opposite when the temperature changes in the range of 4–293 K, which indicates the unusual dynamics of the molecular surrounding the Fe3+ ion. Such features may be due to the presence of two structurally inhomogeneous magnetic centers that exhibit opposite spin dynamics with changing temperature. The presence of this dynamic can have a significant impact on the properties of the substance.
Keywords: organometallic magnet, iron complex with 1-nitroso-2-naphthol, crystal structure, magnetic susceptibility, spin glass, EPR spectra, temperature dynamics.
References:
-
1. Miller J.S. Organic- and molecule-based magnets. Materials Today. 2014. Vol. 17(5). P. 225–235.
(https://doi.org/10.1016/j.mattod.2014.04.023).
2. Yuriko Aoki, Yuuichi Orimoto, Akira Imamura. Survey of Organic Magnetism. In: Quantum Chemical Approach for
Organic Ferromagnetic Material Design. (https://doi.org/10.1007/978-3-319-49829-4_1).
3. Coronado E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices.
Nature Reviews Materials. 2020. Vol. 5. P. 87–104. (https://doi.org/10.1038/s41578-019-0146-8).
4. Rajca A. From high-spin organic molecules to organic polymers with magnetic ordering. Chem. Eur. J. 2002. Vol.
8. P. 4834–4841. (https://doi.org/10.1002/1521-3765(20021104)8:21<4834::AID-CHEM4834>3.0.CO;2-E).
5. Rajca A., Wongsriratanakul J., Rajca S. Magnetic ordering in an organic polymer. Science. 2001. Vol. 294. P.
1503–1505. (https://doi.org/10.1126/science.1065477).
6. Zhang, Z., Wan, M. Nanostructures of polyaniline composites containing nano-magnet. Synth. Metals. 2003. Vol.
132. P. 205–212. (https://doi.org/10.1016/S0379-6779(02)00447-2).
7. Vasyukov V.N., Dyakonov V.P., Shapovalov V.A., Aksimentyeva E.I., Szymczak H., Piehota S. Temperature-induced
change in the ESR spectrum of the Fe3+ ion in polyaniline. Low Temperature Physіcs. 2000. Vol. 26(4). P.
265–269. (https://doi.org/10.1063/1.593896).
8. Matsushita M.M., Kawakami H., Sugawara T., Ogata M. Molecule-based system with coexisting conductivity and
magnetism and without magnetic inorganic ions. Phys. Rev. 2008. Vol. B 77. P. 195208. (https://doi.org/10.1103/PhysRevB.77.195208).
9. Sawada H., Yoshioka H., Kawase T., et al. Preparation of magnetic nanoparticles by the use of self-assembled
fluorinated oligomeric aggregates. A new approach to the dispersion of magnetic particles on poly(methyl
methacrylate) film surface. J. Fluorine Chem. 2005. Vol. 126. P. 914 –917. (https://doi.org/10.1016/j.jfluchem.2005.04.015).
10. Janaky C., Visy C., Berkesi O., Tomba E. Conducting Polymer-Based Electrode with Magnetic Behavior:
Electrochemical Synthesis of Poly(3-thiophene-acetic-acid). Magnetite Nanocomposite Thin Layers. J. Phys. Chem.
C. 2009. Vol. 113. P. 1352–1358. (https://doi.org/10.1021/jp809345b).
11. Opalnych I., Aksimentyeva O., Dyakonov V., et al. Structure and thermodeformation properties of
polymer-magnetite hybrid composites. Mater. Sci. 2012. Vol. 48. P. 95–100. (https://doi.org/10.1007/s11003-012-9477-y).
12. Zebli B., Susha A.S., Sukhorukov G. B., et al. Magnetic Targeting and Cellular Uptake of Polymer
Microcapsules Simultaneously Functionalized with Magnetic and Luminescent Nanocrystals. Langmuir. 2005. Vol. 21.
P. 4262–4265. (https://doi.org/10.1021/la0502286).
13. Tiberto P., Barrera G., Celegato F. et al. Magnetic properties of jet-printer inks containing dispersed
magnetite nanoparticles. Eur. Phys. J. B. 2013. Vol. 86. P. 173. (https://doi.org/10.1140/epjb/e2013-30983-8).
14. Aksimentyeva O.I., Savchyn V.P., Dyakonov V.P., et al. Modification of polymer-magnetic nanoparticles by
luminescent and conducting substances. Mol. Cryst. Liq. Cryst. 2014. Vol. 590. P. 35–42. (https://doi.org/10.1080/15421406.2013.873646).
15. Hegedus L.S. Transition Metals in the Synthesis of Complex Organic Molecules. University Science Books, U.S.
1994. 286 p.
16. Horbenko Yu., Аksimentyeva O. Structure and physicochemical properties of poly-ortho-anisidine doped with
ferric (ІІІ) chloride. Visnyk Lviv. Univ. Ser. Khimia. 2013. 54(2). P. 353–357.
17. Netto C.G.C.M., Toma H.E., Andrade L.H. Superparamagnetic nanoparticles as versatile carriers and supporting
materials for enzymes. J. Mol. Catal. 2013. Vol. 71. P. 85−86. (https://doi.org/10.1016/j.molcatb.2012.08.010).
18. Fonseca L.H.M., Rinaldi A.W., Rubira A.F. et al. Structural, magnetic, and electrochemical properties of
poly(o-anisidine)/maghemite thin films. Mater. Chem. Phys. 2006. Vol. 97. P. 252–255.
(https://doi.org/10.1016/j.matchemphys.2005.08.007).
19. Shapovalov V.A., Shapovalov V.V., Rafailovich M., Piechota S., Dmitruk A., Aksimentyeva E., Mazur A. Dynamic
Characteristic of Molecular Structure of Poly-ortho-Methoxyaniline with Magnetic Probes, The Journal of Physical
Chemistry. B. 2013. Vol. 117. Р. 7830−7834. (https://doi.org/10.1021/jp311456a).
20. Aksimentyeva O.I., Dyakonov V.P. Chapter 9. Effect of aminonaphthalene sulfonic acid nature on the structure
and physical properties of their copolymers with aniline. In Book: Functional Polymer Blends and Nanocomposites.
A practical Engineering Approach / Ed. G.E. Zaikov, L.I. Bazylak, A.K. Haghi. Apple academic Press Ink. Toronto
– New Jersey. 2014. P. 217–231.
21. Stepanov B.I. Introduction in chemistry and technology of organic dyestuffs: Moskow Khimia, 1984. 488 p. (in
Russian).
22. Nicholls A.J., Barber T., Baxendale I.R. The Synthesis and Utility of Metal-Nitrosophenolato
Compounds–Highlighting the Baudisch Reaction. Molecules. 2019. Vol. 24(22). 4018. 31 p. (https://doi.org/10.3390/molecules24224018).
23. Aksimentyeva Е.I., Dyakonov V.P., Vasyukov V.N., et al. Structural features and physicochemical properties
of iron complexes with 1-nitroso-2-naphthol. Journal of General Chemistry. 2000. Vol. 70(10). P. 823–827.
24. Dyakonov V.P., Zubov E., Aksimentyeva E., et al. Low-temperature magnetic behavior of the organic-based
magnet Na[FeO6(C10H6N)3]. Low Temperature Physics. 2014. Vol. 40. P. 835–841.
25. Sverdlova O.V. Electronic Spectra in Organic Chemistry. Leningrad: Khimia. 1985. 248 p.
26. Baser M., Lund H. Organic Electrochemistry. Moscow: Khimia, 1988. Vol. 1. P. 125–140.
27. Сhebataryov О. М., Toropov S. V., Guzenko О. М., et al. Anflitical Chemistry. Quantitative analysis. Odesa:
ОNU. 2020. 80 с. (in Ukrainian).
28. Parisi G. Spin glasses and fragile glasses: Statics, dynamics, and complexity. PNAS. 2006. Vol. 103(21). P.
7948–7955. (https://doi.org/10.1073pnas.0601120103).
29. Kofu M., Watanuki R., Sakakibara T., et al. Spin glass behavior and magnetic boson peak in a structural
glass of a magnetic ionic liquid. Scientific Reports. 2021. Vol. 11. Article number: 12098. (https://doi.org/10.1038/s41598-021-91619-z).
30. Sajfutdinov R.G., Larina L.I., Vakul'skaya T.I., Voronkov M.G. Electron Paramagnetic Resonance in
Biochemistry and Medicine. New York. 2019. 282 p.
31. Dmitruk A.F., Aksimentyeva E.I., Dyakonov V.P., et al. Investigation of structure of Fe3+ magnetic center in
polyparaphenylenе. Intern. J. Quant. Chemi. 2002. Vol. 88. P. 525–529. (https://doi.org/10.1002/qua.10200).
How to Cite
Aksimentyeva-Krasnopolska O. ORGANOMETALLIC MAGNETS BASED ON COMPLEXES OF IRON WITH 1-NITROSO-2-NAPHTHOL Proc. Shevchenko Sci. Soc. Chem. Sci. 2022 Vol. LXX. P. 43-52.