PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXX 2022

Olena AKSIMENTYEVA-KRASNOPOLSKA

Franko National University of Lviv, Kyryla i Mefodiy Str., 6, 79005 Lviv, Ukraine
e-mail: olena.aksimentyeva@lnu.edu.ua

DOI: https://doi.org/10.37827/ntsh.chem.2022.70.043

ORGANOMETALLIC MAGNETS BASED ON COMPLEXES OF IRON WITH 1-NITROSO-2-NAPHTHOL

Providing macroscopic magnetism in organic materials is a very complex but quite promising scientific problem. The need to create an organic magnet is due to a number of expected advantages, such as lightness, transparency, flexibility, ability to switch under the influence of light (magneto-optics), or chemical influences (sensors), creation of modern toners for digital printing, materials for chemical power sources etc. To understand the mechanism of biological processes, in particular, human thinking and DNA functioning may help to study the state of spin glass, biomagnetism, the mechanism of action of paramagnetic probes in living tissues and others. In the present paper the peculiarities of the structure and magnetic behavior of the iron complex with 1-nitroso-2-naphthol Na[Fe(C10H6(NO2)3] have been studied. The powder X-ray diffraction method determined that the crystal structure of the complex is monoclinic with the space group P2/1. According to cyclic voltammetry, the electrochemical behavior of the complex anion Fe(C10H6(NO2)3] is characteristic of reversible electrochemical systems with one electron transfer. Optical absorption bands are observed in the electronic spectra of the complex at 389, 690, and 763 nm. The dependences of the magnetic susceptibility of the complex on the temperature, frequency and magnetic field strength in the temperature range 1.5–200 K in the external magnetic field up to 90 kE and in the frequency range from 95 to 2000 Hz are obtained and analyzed. At low temperatures, the peculiarities of magnetic behavior characteristic of the state of spin glass are revealed. The EPR spectrum of the complex is a superposition of two lines, the behavior of which is opposite when the temperature changes in the range of 4–293 K, which indicates the unusual dynamics of the molecular surrounding the Fe3+ ion. Such features may be due to the presence of two structurally inhomogeneous magnetic centers that exhibit opposite spin dynamics with changing temperature. The presence of this dynamic can have a significant impact on the properties of the substance.

Keywords: organometallic magnet, iron complex with 1-nitroso-2-naphthol, crystal structure, magnetic susceptibility, spin glass, EPR spectra, temperature dynamics.

References:

    1. Miller J.S. Organic- and molecule-based magnets. Materials Today. 2014. Vol. 17(5). P. 225–235. (https://doi.org/10.1016/j.mattod.2014.04.023).
    2. Yuriko Aoki, Yuuichi Orimoto, Akira Imamura. Survey of Organic Magnetism. In: Quantum Chemical Approach for Organic Ferromagnetic Material Design. (https://doi.org/10.1007/978-3-319-49829-4_1).
    3. Coronado E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nature Reviews Materials. 2020. Vol. 5. P. 87–104. (https://doi.org/10.1038/s41578-019-0146-8).
    4. Rajca A. From high-spin organic molecules to organic polymers with magnetic ordering. Chem. Eur. J. 2002. Vol. 8. P. 4834–4841. (https://doi.org/10.1002/1521-3765(20021104)8:21<4834::AID-CHEM4834>3.0.CO;2-E).
    5. Rajca A., Wongsriratanakul J., Rajca S. Magnetic ordering in an organic polymer. Science. 2001. Vol. 294. P. 1503–1505. (https://doi.org/10.1126/science.1065477).
    6. Zhang, Z., Wan, M. Nanostructures of polyaniline composites containing nano-magnet. Synth. Metals. 2003. Vol. 132. P. 205–212. (https://doi.org/10.1016/S0379-6779(02)00447-2).
    7. Vasyukov V.N., Dyakonov V.P., Shapovalov V.A., Aksimentyeva E.I., Szymczak H., Piehota S. Temperature-induced change in the ESR spectrum of the Fe3+ ion in polyaniline. Low Temperature Physіcs. 2000. Vol. 26(4). P. 265–269. (https://doi.org/10.1063/1.593896).
    8. Matsushita M.M., Kawakami H., Sugawara T., Ogata M. Molecule-based system with coexisting conductivity and magnetism and without magnetic inorganic ions. Phys. Rev. 2008. Vol. B 77. P. 195208. (https://doi.org/10.1103/PhysRevB.77.195208).
    9. Sawada H., Yoshioka H., Kawase T., et al. Preparation of magnetic nanoparticles by the use of self-assembled fluorinated oligomeric aggregates. A new approach to the dispersion of magnetic particles on poly(methyl methacrylate) film surface. J. Fluorine Chem. 2005. Vol. 126. P. 914 –917. (https://doi.org/10.1016/j.jfluchem.2005.04.015).
    10. Janaky C., Visy C., Berkesi O., Tomba E. Conducting Polymer-Based Electrode with Magnetic Behavior: Electrochemical Synthesis of Poly(3-thiophene-acetic-acid). Magnetite Nanocomposite Thin Layers. J. Phys. Chem. C. 2009. Vol. 113. P. 1352–1358. (https://doi.org/10.1021/jp809345b).
    11. Opalnych I., Aksimentyeva O., Dyakonov V., et al. Structure and thermodeformation properties of polymer-magnetite hybrid composites. Mater. Sci. 2012. Vol. 48. P. 95–100. (https://doi.org/10.1007/s11003-012-9477-y).
    12. Zebli B., Susha A.S., Sukhorukov G. B., et al. Magnetic Targeting and Cellular Uptake of Polymer Microcapsules Simultaneously Functionalized with Magnetic and Luminescent Nanocrystals. Langmuir. 2005. Vol. 21. P. 4262–4265. (https://doi.org/10.1021/la0502286).
    13. Tiberto P., Barrera G., Celegato F. et al. Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles. Eur. Phys. J. B. 2013. Vol. 86. P. 173. (https://doi.org/10.1140/epjb/e2013-30983-8).
    14. Aksimentyeva O.I., Savchyn V.P., Dyakonov V.P., et al. Modification of polymer-magnetic nanoparticles by luminescent and conducting substances. Mol. Cryst. Liq. Cryst. 2014. Vol. 590. P. 35–42. (https://doi.org/10.1080/15421406.2013.873646).
    15. Hegedus L.S. Transition Metals in the Synthesis of Complex Organic Molecules. University Science Books, U.S. 1994. 286 p.
    16. Horbenko Yu., Аksimentyeva O. Structure and physicochemical properties of poly-ortho-anisidine doped with ferric (ІІІ) chloride. Visnyk Lviv. Univ. Ser. Khimia. 2013. 54(2). P. 353–357.
    17. Netto C.G.C.M., Toma H.E., Andrade L.H. Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J. Mol. Catal. 2013. Vol. 71. P. 85−86. (https://doi.org/10.1016/j.molcatb.2012.08.010).
    18. Fonseca L.H.M., Rinaldi A.W., Rubira A.F. et al. Structural, magnetic, and electrochemical properties of poly(o-anisidine)/maghemite thin films. Mater. Chem. Phys. 2006. Vol. 97. P. 252–255. (https://doi.org/10.1016/j.matchemphys.2005.08.007).
    19. Shapovalov V.A., Shapovalov V.V., Rafailovich M., Piechota S., Dmitruk A., Aksimentyeva E., Mazur A. Dynamic Characteristic of Molecular Structure of Poly-ortho-Methoxyaniline with Magnetic Probes, The Journal of Physical Chemistry. B. 2013. Vol. 117. Р. 7830−7834. (https://doi.org/10.1021/jp311456a).
    20. Aksimentyeva O.I., Dyakonov V.P. Chapter 9. Effect of aminonaphthalene sulfonic acid nature on the structure and physical properties of their copolymers with aniline. In Book: Functional Polymer Blends and Nanocomposites. A practical Engineering Approach / Ed. G.E. Zaikov, L.I. Bazylak, A.K. Haghi. Apple academic Press Ink. Toronto – New Jersey. 2014. P. 217–231.
    21. Stepanov B.I. Introduction in chemistry and technology of organic dyestuffs: Moskow Khimia, 1984. 488 p. (in Russian).
    22. Nicholls A.J., Barber T., Baxendale I.R. The Synthesis and Utility of Metal-Nitrosophenolato Compounds–Highlighting the Baudisch Reaction. Molecules. 2019. Vol. 24(22). 4018. 31 p. (https://doi.org/10.3390/molecules24224018).
    23. Aksimentyeva Е.I., Dyakonov V.P., Vasyukov V.N., et al. Structural features and physicochemical properties of iron complexes with 1-nitroso-2-naphthol. Journal of General Chemistry. 2000. Vol. 70(10). P. 823–827.
    24. Dyakonov V.P., Zubov E., Aksimentyeva E., et al. Low-temperature magnetic behavior of the organic-based magnet Na[FeO6(C10H6N)3]. Low Temperature Physics. 2014. Vol. 40. P. 835–841.
    25. Sverdlova O.V. Electronic Spectra in Organic Chemistry. Leningrad: Khimia. 1985. 248 p.
    26. Baser M., Lund H. Organic Electrochemistry. Moscow: Khimia, 1988. Vol. 1. P. 125–140.
    27. Сhebataryov О. М., Toropov S. V., Guzenko О. М., et al. Anflitical Chemistry. Quantitative analysis. Odesa: ОNU. 2020. 80 с. (in Ukrainian).
    28. Parisi G. Spin glasses and fragile glasses: Statics, dynamics, and complexity. PNAS. 2006. Vol. 103(21). P. 7948–7955. (https://doi.org/10.1073pnas.0601120103).
    29. Kofu M., Watanuki R., Sakakibara T., et al. Spin glass behavior and magnetic boson peak in a structural glass of a magnetic ionic liquid. Scientific Reports. 2021. Vol. 11. Article number: 12098. (https://doi.org/10.1038/s41598-021-91619-z).
    30. Sajfutdinov R.G., Larina L.I., Vakul'skaya T.I., Voronkov M.G. Electron Paramagnetic Resonance in Biochemistry and Medicine. New York. 2019. 282 p.
    31. Dmitruk A.F., Aksimentyeva E.I., Dyakonov V.P., et al. Investigation of structure of Fe3+ magnetic center in polyparaphenylenе. Intern. J. Quant. Chemi. 2002. Vol. 88. P. 525–529. (https://doi.org/10.1002/qua.10200).

How to Cite

Aksimentyeva-Krasnopolska O. ORGANOMETALLIC MAGNETS BASED ON COMPLEXES OF IRON WITH 1-NITROSO-2-NAPHTHOL Proc. Shevchenko Sci. Soc. Chem. Sci. 2022 Vol. LXX. P. 43-52.

Download the pdf