PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXX 2022

Denys MAZUR, Yaroslav KURYS, Vyacheslav KOSHECHKO, Vitaly POKHODENKO

L.V. Pysarzhevskii Institute of Physical Chemistry of the NAS of Ukraine, Nauky Pr., 31, 03028 Kyiv, Ukraine
e-mail: mazur.denis.olegovich@gmail.com

DOI: https://doi.org/10.37827/ntsh.chem.2022.70.007

EFFECTIVE ELECTROCATALYST FOR HYDROGEN EVOLUTION FROM WATER BASED ON VANADIUM DOPED Mo2C, Mo2N AND REDUCED GRAPHENE OXIDE

Molybdenum compounds (Mo2C, MoS2, MoP, Mo2N, etc.) and their composites with different nanosized carbon materials are considered to be one of the most promising Pt-free hydrogen evolution reaction (HER) electrocatalysts.
Along with non-metallic dopants (N, P etc.), d-metals are also used as dopants to increase the activity of Mo-containing hybrid catalysts in HER. Thus, we have recently shown the possibility of obtaining HER nanocomposite electrocatalysts based on vanadium doped particles of Mo2C and N,P-doped reduced graphene oxide (rGO) using precursor based on polypyrrole, H3PVMo11O40 (PVMo11) and rGO – V-Mo2C/N,P-rGO. It was found that doping with vanadium atoms in situ promotes an increase in the activity of catalysts in HER, compared with the analogue obtained in the absence of V doping.
The nature of the nitrogen-containing conjugated polymer can also affect the type of metal-containing particles formed during the high-temperature processing of such macromolecules together with the metal precursors. Given this, the paper shows the possibility of obtaining a promising hybrid electrocatalyst for HER based on vanadium-doped Mo2C, Mo2N and N,P-doped rGO (V-Mo2C,Mo2N/N,P-rGO) by pyrolysis of composite-precursor based on poly-5-aminoindole, PVMo11 and rGO. It was found that the simultaneous presence of Mo2C and Mo2N phases in the catalyst causes an increase in the activity of V-Mo2C,Mo2N/N,P-rGO in HER compared to the analogue containing only Mo2C phase (V-Mo2C/N,P-rGO), which is manifested in reduction in hydrogen evolution overpotential at a current density of 10 mA/cm2 (on 15–29 mV), an increase in the magnitude of exchange currents (by ~2.3–2.7 times), as well as in the anodic shift of the process onset potential and the reduction of Tafel slope (in alkaline electrolyte).

Keywords: nanocomposite electrocatalyst, hydrogen evolution reaction, Mo2C, Mo2N, vanadium doping.

References:

    1. Turner J.A. Sustainable hydrogen production. Science. 2004. Vol. 305(5686). P. 972–974. (https://doi.org/10.1126/science.1103197).
    2. Wang M., Wang Z., Gong X., Guo Z. The intensification technologies to water electrolysis for hydrogen production - A review. Renewable Sustainable Energy Rev. 2014. Vol. 29. P. 573–588. (https://doi.org/10.1016/j.rser.2013.08.090).
    3. Shao M., Chang Q., Dodelet J.-P., Chenitz R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016. Vol. 116(6). P. 3594–3657. (https://doi.org/10.1021/acs.chemrev.5b00462).
    4. Ma F.-X., Wu H. Bin, Xia B.Y., Xu C.-Y., Lou X.W.D. Hierarchical β-Mo2C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production. Angew. Chemie Int. Ed. 2015. Vol. 54(51). P. 15395–15399. (https://doi.org/10.1002/anie.201508715).
    5. Chi J.Q., Gao W.K., Lin J.H., Dong B., Yan K.L., Qin J.F., Liu Z.Z., Chai Y.M., Liu C.G. Nitrogen, phosphorus dual-doped molybdenum-carbide/molybdenum-phosphide-@-carbon nanospheres for efficient hydrogen evolution over the whole pH range. J. Colloid Interface Sci. 2018. Vol. 513. P. 151–160. (https://doi.org/10.1016/j.jcis.2017.11.023).
    6. Guo J., Wang J., Wu Z., Lei W., Zhu J., Xia K., Wang D. Controllable synthesis of molybdenum-based electrocatalysts for a hydrogen evolution reaction. J. Mater. Chem. A. 2017. Vol. 5(10). P. 4879–4885. (https://doi.org/10.1039/c6ta10758c).
    7. Zhang X., Zhou F., Pan W., Liang Y., Wang R. General Construction of Molybdenum-Based Nanowire Arrays for pH-Universal Hydrogen Evolution Electrocatalysis. Adv. Funct. Mater. 2018. Vol. 28 (43). P. 1804600. (https://doi.org/10.1002/adfm.201804600).
    8. Benck J.D., Hellstern T.R., Kibsgaard J., Chakthranont P., Jaramillo T.F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014. Vol. 4(11). P. 3957–3971. (https://doi.org/10.1021/cs500923c).
    9. Zhang L., Sun L., Huang Y., Sun Y., Hu T., Xu K., Ma F. Hydrothermal synthesis of N-doped RGO/MoSe2 composites and enhanced electro-catalytic hydrogen evolution. J. Mater. Sci. 2017. Vol. 52(23). P. 13561–13571. (https://doi.org/10.1007/s10853-017-1417-7).
    10. Shi Y., Zhang B. Engineering transition metal phosphide nanomaterials as highly active electrocatalysts for water splitting. Dalt. Trans. 2017. Vol. 46(48). P. 16770–16773.(https://doi.org/10.1039/C7DT03648E).
    11. Ge Z., Fu B., Zhao J., Li X., Ma B., Chen Y. A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. J. Mater. Sci. 2020. Vol. 55(29). P. 14081–14104.(https://doi.org/10.1007/s10853-020-05010-w).
    12. Zhou W., Jia J., Lu J., Yang L., Hou D., Li G., Chen S. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy. 2016. Vol. 28 P. 29–43. (https://doi.org/10.1016/j.nanoen.2016.08.027).
    13. Li J. Sen, Wang Y., Liu C.H., Li S.L., Wang Y.G., Dong L.Z., Dai Z.H., Li Y.F., Lan Y.Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016. Vol. 7(1). P. 1–8. (https://doi.org/10.1038/ncomms11204).
    14. Guo J., Zhang K., Sun Y., Zong Y., Guo Z., Liu Q., Zhang X., Xia Y. Enhanced hydrogen evolution of MoS2/RGO: vanadium, nitrogen dopants triggered new active sites and expanded interlayer. Inorg. Chem. Front. 2018. Vol. 5(9). P. 2092–2099. (https://doi.org/10.1039/C8QI00488A).
    15. Wen L., Yu J., Xing C., Liu D., Lyu X., Cai W., Li X. Flexible vanadium-doped Ni2P nanosheet arrays grown on carbon cloth for an efficient hydrogen evolution reaction. Nanoscale. 2019. Vol. 11(10). P. 4198–4203. (https://doi.org/10.1039/C8NR10167A).
    16. Jiang A., Zhang B., Li Z., Jin G., Hao J. Vanadium-Doped WS 2 Nanosheets Grown on Carbon Cloth as a Highly Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Chem. – An Asian J. 2018. Vol. 13(11). P. 1438–1446. (https://doi.org/10.1002/asia.201800003).
    17. Guo J., Zhang K., Sun Y., Liu Q., Tang L., Zhang X. Efficient bifunctional vanadium-doped Ni3S2 nanorod array for overall water splitting. Inorg. Chem. Front. 2019. Vol. 6(2). P. 443–450. (https://doi.org/10.1039/c8qi01104d).
    18. Bao J., Wang Z., Xie J., Xu L., Lei F., Guan M., Zhao Y., Huang Y., Li H. A ternary cobalt–molybdenum–vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2019. Vol. 55(24). P. 3521–3524. (https://doi.org/10.1039/C9CC00269C).
    19. Chandrasekaran S., Zhang P., Peng F., Bowen C., Huo J., Deng L. Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting. J. Mater. Chem. A. 2019. Vol. 7(11). P. 6161–6172. (https://doi.org/10.1039/C8TA12238E).
    20. Mazur D.O., Kurys Y.I., Koshechko V.G., Pokhodenko V.D. Influence of Vanadium Doping on the Activity of Nanocomposite Electrocatalysts Based on Molybdenum Carbide and Reduced Graphene Oxide in the Process of Hydrogen Evolution from Water. Theor. Exp. Chem. 2022. Vol. 57(6). P. 421–428. (https://doi.org/10.1007/s11237-022-09711-y).
    21. Kurys Y.I., Mazur D.O., Koshechko V.G., Pokhodenko V.D. Nanocomposite Based on N,P-Doped Reduced Graphene Oxide, Mo2C, and Mo2N as Efficient Electrocatalyst for Hydrogen Evolution in a Wide pH Range. Electrocatalysis. 2021. Vol. 12(5). P. 469–477. (https://doi.org/10.1007/s12678-021-00667-6).
    22. Kern F., Ruf S., Emig G. Vapour-phase trimerization of formaldehyde to trioxane catalysed by 1-vanado-11-molybdophosphoric acid. Appl. Catal. A Gen. 1997. Vol. 150(1). P. 143–151. (https://doi.org/10.1016/S0926-860X(96)00286-4).
    23. Kovtyukhova N.I. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999. Vol. 11(3). P. 771–778. (https://doi.org/10.1021/cm981085u).
    24. Song I.K., Barteau M.A. Redox properties of Keggin-type heteropolyacid (HPA) catalysts: effect of counter-cation, heteroatom, and polyatom substitution. J. Mol. Catal. A Chem. 2004. Vol. 212(1–2). P. 229–236. (https://doi.org/10.1016/j.molcata.2003.10.040).
    25. Xu L.Q., Liu Y.L., Neoh K., Kang E., Fu G.D. Reduction of graphene oxide by aniline with its concomitant oxidative polymerization. Macromol. Rapid Commun. 2011. Vol. 32(8). P. 684–688. (https://doi.org/https://doi.org/10.1002/marc.201000765).
    26. Wang H.M., Wang X.H., Zhang M.H., Du X.Y., Li W., Tao K.Y. Synthesis of bulk and supported molybdenum carbide by a single-step thermal carburization method. Chem. Mater. 2007. Vol. 19(7). P. 1801–1807. (https://doi.org/10.1021/cm0615471).
    27. Chen X., Qi J., Wang P., Li C., Chen X., Liang C. Polyvinyl alcohol protected Mo2C/Mo2N multicomponent electrocatalysts with controlled morphology for hydrogen evolution reaction in acid and alkaline medium. Electrochim. Acta. 2018. Vol. 273 P. 239–247. (https://doi.org/10.1016/j.electacta.2018.04.033).
    28. Yan H., Xie Y., Jiao Y., Wu A., Tian C., Zhang X., Wang L., Fu H. Holey Reduced Graphene Oxide Coupled with an Mo2N-Mo2C Heterojunction for Efficient Hydrogen Evolution. Adv. Mater. 2018. Vol. 30(2). P. 1704156. (https://doi.org/10.1002/adma.201704156).
    29. Chen W.F., Iyer S., Iyer S., Sasaki K., Wang C.H., Zhu Y., Muckerman J.T., Fujita E. Biomass-derived electrocatalytic composites for hydrogen evolution. Energy Environ. Sci. 2013. Vol. 6(6). P. 1818–1826. (https://doi.org/10.1039/c3ee40596f).

How to Cite

Mazur D., Kurys Ya., Koshechko V., Pokhodenko V. Effective electrocatalyst for hydrogen evolution from water based on vanadium doped Mo2C, Mo2N and reduced graphene oxide. Proc. Shevchenko Sci. Soc. Chem. Sci. 2022 Vol. LXX. P. 7-15.

Download the pdf