Svitlana HALAICHAK, Myroslav GOLOVCHUK, Bohdan DATSKO, Mykhailo YATSYSHYN, Sergiy KORNIY
Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine Naukova str., 5, 79601 Lviv, Ukraine e-mail: svityliagolovey@gmail.com
DOI: https://doi.org/10.37827/ntsh.chem.2022.70.151
MORPHOLOGY AND THERMAL PROPERTIES OF ZEOLITE MECHANOCHEMICALLY MODIFIED BY Ca, Zn AND Mn(II) CATIONS
An important direction of new technologies of corrosion protection of metals is the use of inhibitory pigments in the composition of paints and varnishes, which are tolerant to the environment, have high efficiency and can replace chromates. Promising anti-corrosion pigments for paints and varnishes are ion-exchange substances, in particular modified zeolites, which will provide optimal selective resistance to aggressive environmental influences. In this work the dispersion and morphology of complex pigments based on synthetic zeolite and monophosphates of calcium, zinc and manganese are investigated. It was found that the modification of zeolites by metal monophosphates by mechanochemical method in a ball mill for 60 min at a speed of 200 rpm leads to decrease in fraction to 2.0 μm by ~44%… 64% and an increase from 2.0 to 10.0 μm by ~60%. The fraction up to 2.0 μm is represented by particles of irregular globular shape > 10.0 μm - agglomerates. Thermogravimetric studies have shown that all synthesized complex pigments are characterized by thermal stability. Thermolysis is characterized by 4 stages, which correspond to the removal of physically adsorbed water, chemically sorbed water, dehydroxylation of the surface by cleavage of OH groups, and phase transitions. Modification with metal monophosphates increases the thermal stability of pigments in the sequence Na-A: Ca(H2PO4)2 - Na-A: Zn(H2PO4)2 - Na-A: Mn(H2PO4)2. Thermolysis of samples in the temperature range from 15 to 700 °С is took place during four stages, most intensively at temperatures up to 400 °С. During mechanochemical dispersion of zeolites with calcium, zinc and manganese monophosphates, the amount of physically adsorbed water increases by ~18… ~41%, and chemically sorbed water decreases by ~19… ~41%. The specific surface area of zeolite Na-A: Ca(H2PO4)2 increases by ~8%, and Na-A: Zn(H2PO4)2 and Na-A: Mn(H2PO4)2 decreases by ~50% and ~22%, respectively. This may be due to the radii of the metal cations and the fraction content up to 2.0 μm when grinding zeolites. Based on the obtained results, the synthesized zeolites can be recommended for further studies of their inhibitory properties as pigments in the composition of paints and varnishes.
Keywords: zeolites, modification, mechanochemical synthesis, monophosphate, thermogravimetry.
References:
-
1. Biletsky V.S., Suyarko V.G., Ishchenko L.V. Mineralogical and petrographic dictionary. Book 1: Mineralogical
dictionary. ‒ Kharkiv: NTU. KhPI, 2018. 444 p. (in Ukrainian).
2. Wanga S., Peng Y. Natural zeolites as effective adsorbents in water and waste water treatment. Chem. Eng. J.
2010. Vol. 156. P. 11–24. (https://doi.org/10.1016/j.cej.2009.10.029).
3. Akhalbedashvili L.G. Catalytic and ion exchange properties of modified zeolites and superconducting cuprates:
dis. Dr. Chem. Sciences: 02.00.04 / LG Akhalbedashvili. ‒ Tbilisi, 2006. 248 p.
4. Ates A., Hardacre C. The effect of various treatment conditions on natural zeolites: Ion exchange, acidic,
thermal and steam treatments. J. Colloid Interf. Sci. 2012. Vol. 372. Р. 130–140. (https://doi.org/10.1016/j.jcis.2012.01.017).
5. Ozin G.A., Kuperman A., Stein A. Advanced zeolite, materials science. Angewandte Chemie International Edition
in English. 1989. Vol. 28(3). P. 359–376. (https://doi.org/10.1002/anie.198903591 ).
6. Dziedzicka A., Sulikowski B., Ruggiero-Mikołajczyk M. Catalytic and physicochemical properties of modified
natural clinoptilolite. CatalysisToday. 2016. Vol. 135(1). P. 50–58. (https://doi.org/10.1016/j.cattod.2015.04.039).
7. Khataee A., Bozorg S., Khorram S., Fathinia M. Сonversion of natural clinoptilolite microparticles to nanorods
by glowdis charge plasma: anovelfe-impregnated nanocatalysts for the heterogeneous fenton process. Ind. Eng. Chem.
Res. 2013. Vol. 52. P. 18225–18233. (https://doi.org/10.1021/ie403283n).
8. Nazeer A., Madkour M. Potential use of smart coatings for corrosion protection of metals and alloys: A review.
J. Mol. Liq. 2018. Vol. 253. P. 11–22. (https://doi.org/10.1016/j.molliq.2018.01.027).
9. Gharbi O., Thomas S., Smith C., Birbilis N. Chromate replacement: What does the future hold? NPJ Mater. Degrad.
2018. Vol. 2. P. 1–8. (https://doi.org/10.1038/s41529-018-0034-5).
10. Kendig M., Jeanjaquet S., Addison R., Waldrop J. Role of hexavalent chromium in the inhibition of corrosion of
aluminum alloys. Surface and Coatings Technology. 2001. Vol. 140(1). P. 58–66. (https://doi.org/10.1016/S0257-8972(01)01099-4).
11. Sinko J. Challenges of chromate inhibitor pigments replacement in organic coatings. Progress in organic
coatings. 2001. Vol. 42. P. 267–282. (https://doi.org/10.1016/S0300-9440(01)00202-8).
12. Shao Y., Jia C., Meng G., Zhang T., Wang F. The role of a zinc phosphate pigment in the corrosion of scratched
epoxy-coated steel. Corrosion Science. 2009. Vol. 51. P. 371–379. (https://doi.org/10.1016/j.corsci.2008.11.015).
13. Gimeno M., Puig M., Chamorro S., Molina J. Improvement of the anticorrosive properties of an alkyd coating
with zinc phosphate pigments assessed by NSS and ACET. Prog. Org. Coat. 2016. Vol. 95. P. 46–53. (https://doi.org/10.1016/j.porgcoat.2016.02.005).
14. Attar M.M. Investigation on zinc phosphate effectiveness at different pigment volume concentrations via
electrochemical impedance spectroscopy. Electrochimica Acta. 2005. Vol. 50(24). Р. 4645–4648. (https://doi.org/10.1016/j.electacta.2005.02.015).
15. Hao Y., Liu F., Han E., Anjum S., Xu G. The mechanism of inhibition by zinc phosphate in an epoxy coating.
Corrosion Science. 2013. Vol. 69. P. 77–86. (https://doi.org/10.1016/j.corsci.2012.11.025).
16. Shao Y., Jia C., Meng G., Zhang T., & Wang F. The role of a zinc phosphate pigment in the corrosion of
scratched epoxy-coated steel. Corrosion Science. 2009. Vol. 51. P. 371–379. (https://doi.org/10.1016/j.corsci.2008.11.015).
17. Pokhmurs’kyi V.I., Kwiatkowski L., Zin I.M., Lyon S.B., Bilyi L.M., Ratushna M.B. Corrosion protection of
aluminum alloys by inhibiting pigments alloy. Mater. Sci. 2006. Vol. 42(5). Р. 573–578. (https://doi.org/10.1007/s11003-006-0118-1).
18. Gimeno M., Puig M., Chamorro S., Molina J. Improvement of the anticorrosive properties of an alkyd coating
with zinc phosphate pigments assessed by NSS and ACET. Prog. Org. Coat. 2016. Vol. 95. P. 46–53. (https://doi.org/10.1016/j.porgcoat.2016.02.005).
19. Zheludkevich M., Tedim J., Ferreira M. “Smart” coatings for active corrosion protection based on
multi-functional micro and nanocontainers. Electrochim. Acta. 2012. Vol. 82. P. 314–323. (https://doi.org/10.1016/j.electacta.2012.04.095).
20. Korniy S., Zin I., Danyliak M.-O., Khlopyk O., Protsenko V., Biliy L., Golovchuk M., Zin Ya. Protective
properties of mechanochemically obtained zeolite/phosphate anti-corrosion pigments for paints and varnishes.
Voprosy khimii i khimicheskoi tekhnologii. 2021. Vol. 3. P. 107–112. (in Ukrainian). (https://doi.org/10.32434/0321-4095-2021-136-3-107-112).
21. Korniy S., Zin I., Khlopik O., Golovchuk M., Danyliak M.-O., Halaichak S. Modification of synthetic zeolite by
metal cations to increase its anti-corrosion efficiency. Physico-chemical mechanics of materials. 2021. Vol.
57(1). P. 110–118. (in Ukrainian). (https://doi.org/10.1007/s11003-021-00521-6).
22. James S., Adams C. J., Bolm, Braga D., Collie P., Friscic T., Grepioni F, Harris K, Hyett G., Jones W., Krebs
A., Mack J., Maini L., Orpen A., Parkin I., Shearouse W., Steed J., Waddell D. Mechanochemistry: opportunities for
new and cleaner synthesis. Chem. Socie. Rev. 2012. Vol. 41(1). P. 413–447. (https://doi.org/10.1039/C1CS15171A).
23. Morris R.E., James S.L. Solventless synthesis of zeolites. Angewandte Chemie International Edition. 2013. Vol.
52(8). P. 2163–2165. (https://doi.org/10.1002/anie.201209002).
24. Xu C., De S., Balu A. M., Ojeda M., Luque R. Mechanochemical synthesis of advanced nanomaterials for catalytic
applications. Chem. Commun. 2015. Vol. 51(31). P. 6698–6713. (https://doi.org/10.1039/C4CC09876E).
25. Szczęśniak B., Borysiuk S., Choma J., Jaroniec M. Mechanochemical synthesis of highly porous materials. Mater.
Horiz. 2020. Vol. 7(6). P. 1457–1473. (https://doi.org/10.1039/D0MH00081G).
26. Cliffe M.J., Mottillo C., Stein R.S., Bucar D.K., Friscic T. Accelerated aging: a low energy, solvent-free
alternative to solvothermal and mechanochemical synthesis of metal-organic materials. Chem. Scie. 2012. Vol. 3(8).
P. 2495-2500. (https://doi.org/10.1039/C2SC20344H).
27. Mikhailik O., Povstugar V., Mikhailova S., Lyakhovich A., Fedorenko O., Kurbatova G., Shklovskaya N., Chuiko
A. Surface structure of finely dispersed iron powders I. Formation of stabilizing coating. Colloids and surfaces.
1991. Vol. 52. P. 315–324. (https://doi.org/10.1016/0166-6622(91)80024-I).
28. Yagolnyk S., Kochubey V., Trotsky V. Investigation of thermal stability of natural clinoptilolite with
different degrees of fragmentation. Lviv Politechnic Publishing House. Chemistry, Technology and Application of
Substances. 2006. Vol 553. P. 222–225. (in Ukrainian).
29. Buzimov A.Y., Kulkov S.N., Kurovics E., Eckl W., Pappert S. Influence of mechanical activation on the
properties of natural zeolites from Tokaj Mountain. – IOP Conf. Ser.: Mater. Sci. Eng., Miskolc, Hungary, 3 March
– 7 October 2016, Vol. 175. Р. 1–5. (https://doi.org/10.1088/1757-899X/175/1/012033).
30. Pokhmurskii V.I., Zin I.M., Bily L.M., Vynar V.A., Zin Y.I. Aluminium alloy corrosion inhibition by
chromate‐free composition of zinc phosphate and ion‐exchanged zeolite. Surf. and interf. analys. 2013. Vol.
45(10). P. 1474–1478. (https://doi.org/10.1002/sia.5275).
How to Cite
Halaichak S., Golovchuk M., Datsko B., Yatsyshyn M, Korniy S. MORPHOLOGY AND THERMAL PROPERTIES OF ZEOLITE MECHANOCHEMICALLY MODIFIED BY Ca, Zn AND Mn(II) CATIONS Proc. Shevchenko Sci. Soc. Chem. Sci. 2022 Vol. LXX. P. 151-158.