PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXX 2022

Oksana HERTSYK1, Myroslava KOVBUZ1, Natalia PANDIAK2, Myroslava TASHAK3

1Ivan Franko Lviv National University, Kyryla and Mefodiya Str., 6, 79005 Lviv, Ukraine
e-mail: o_hertsyk@yahoo.com

2Ukrainian National Forestry University, Gen. Chuprynka Str., 103, 79057 Lviv, Ukraine

3Lviv Polytechnic National University, Stepana Bandery Str, 12, 79013 Lviv, Ukraine

DOI: https://doi.org/10.37827/ntsh.chem.2022.70.128

FEATURES OF THE FORMATION OF SURFACE LAYERS ON METALS

The practical application of metal alloys, in particular amorphous ones, often necessitates the creation of multifunctional coatings of various nature and purpose on their surfaces.
The main requirements for obtaining optimal results of applying such coatings are as follows:
1. Understanding of the morphology of the surface before coating.
2. Information on the physical and mechanical properties of the metal-coating composition.
3. Testing of the adhesion strength immediately after coating.
4. The use of different methods of control of the application and functionality of the coating, depending on the operating conditions of the product.
The reliability of functional coatings also depends on the preparation of the surface of the material, as well as the choice of appropriate conditions for its formation. However, regardless of the purpose, a general requirement that all coatings must meet is a good adhesion to the surface of the substrate material. It is also important to ensure the uniform thickness in different areas (protrusions and depressions), because the thickness of the coating determines the longevity of its protective effect. Also, the coatings should have very low rate of dissolution even in the most aggressive environments in which they work. Therefore, the problem of creating optimal coatings is complex and requires a comprehensive study in each specific case.
In the case of industrial use of amorphous metal alloys (AMA) based on transition metals with different alloying elements, special attention must be paid to the elemental composition of the surface of the finished products, which can differ significantly from the quantitative composition of the initial charge, which depends on the nature of the components and the applied protocol of ultra-fast cooling of the melt. The difference in the elemental composition on the surface and in the volume of the amorphous alloy is also due to the possible formation of surface chemical compound i.e. metal oxides.
The protective properties are evaluated by the speed of metal oxidation, the formation of a layer and the duration of its action. Comparative assessment of the reactivity of amorphous alloys Al87.0Y5.0Ni8.0, Fe73.6Cu1.0Nb2.4Si15.8B1.2, Fe78.5Ni1.0Mo0.5Si6.0B14.0, Co75.5Fe4.6Si6.0B16.7 in an aqueous solution of sodium chloride was carried out using electrochemical studies.
The main requirements for obtaining optimal results of applying protective coatings on crystalline and amorphous surfaces have been analyzed.

Keywords:amorphous metal alloys, surface coatings, oxide layers.

References:

    1. Zhang H., Qiu Z., Wang H. Study on Material of Polymer-based Electromagnetic Shielding Composites. Mater. Phys. Chem. 2018. Vol. 1(28). P. 13–19. (https://doi.org/10.18282/mpc.v1i1.561).
    2. Davies H., Gibbs M. Amorphous Alloys. Handbook of Magnetism and Advanced Materials. London: John Wiley & Sons, 2007. 1801 р. (https://doi.org/10.1002/9780470022184.hmm401).
    3. Nosenko A.V., Kyrylchuk V.V., Semen'ko M.P. et all. Soft magnetic cobalt based amorphous alloys with low saturation induction. J. Magn. Magn. Mat. 2020. Vol. 515. 167328. (https://doi.org/10.1016/j.jmmm.2020.167328).
    4. Vasylyev M.O., Nosenko V.K., Shyvaniuk V.M., Halstian H.H., Zagorulko I.V. Magnetomechanical effects in amorphous ribbons. Metallofiz. i Noveish. Tekhnolog. 2020. Vol. 42(7). P. 949–962. (https://doi.org/10.15407/mfint.42.07.0949).
    5. Jung J.-I., Risch M., Park S., Kim M.G., Nam G., Jeong H.-Y., Shao-Horn Y., Cho J. Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy Environ. Sci. 2016. Vol. 9. P. 176–183. (https://doi.org/10.1039/C5EE03124A).
    6. Guo C., Zheng Y., Ran J., Xie F., Jaroniec M., Qiao S.Z. Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis. Angew. Chem. Int. Ed. 2017. Vol. 56(29). P. 8539–8543. (https://doi.org/10.1002/anie.201701531).
    7. Gupta S., Qiao L., Zhao S., Xu H., Lin Y., Devaguptapu S.V., Wang X., Swihart M.T., Wu G. Highly Active and Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Template‐Free Graphitization for Bifunctional Oxygen Reduction and Evolution. Adv. Energy Mater. 2016. Vol. 6. P. 1601198. (https://doi.org/10.1002/aenm.201601198).
    8. Xiao-Meng Liu, Xiaoyang Cui, Kamran Dastafkan, Hao-Fan Wang, Cheng Tang Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. J. Energy Chem. 2021. Vol. 53. P. 290–302. (https://doi.org/10.1016/j.jechem.2020.04.012).
    9. Koninck M., Marsan B. MnxCu1−xCo2O4 used as bifunctional electrocatalyst in alkaline medium. Electrochimica Acta. 2008. Vol. 53(23). Р. 7012–7021. (https://doi.org/10.1016/j.electacta.2008.02.002).
    10. Abuzarova К., Korchuganova О. Nanosized Iron Oxyhydroxide: Properties, Application, Preparation. J. Phys.: Conf. Ser. 2020. Vol. 1534. P. 012002. (https://doi.org/10.1088/1742-6596/1534/1/012002).
    11. Boichyshyn L.M., Hertsyk O.M., Kovbuz M.O., Pereverzeva T.H., Kotur B.Ya. Properties of amorphous alloys of Al–REM–Ni and Al–REM–Ni–Fe systems with nanocrystalline structure. Mat. Sci. 2013. Vol. 48(4). P. 555–559. (https://doi.org/10.1007/s11003-013-9537-y).
    12. Boichyshyn L.M., Kovbuz M.O., Hertsyk O.M., Kotur B.Y., Nosenko V.K. Electrochemical corrosion of the Al87(Y,Dy)5Ni8 amorphous alloys. Metallofiz. Noveishie Tekhnol. 2012. Vol. 34(11). P. 1585‒1593. (in Ukrainian).
    13. Miracle D.B. The efficient cluster packing model – an atomic structural model for metallic glasses. Acta Mater. 2006. Vol. 54(16). P. 4317–4336. (https://doi.org/10.1016/j.actamat.2006.06.002).
    14. Sheng H.W., Luo W.K., Alamgir F.M., Bai J.M., Ma E. Atomic packing and short-to-medium-range order in metallic glasses. Nature. 2006. Vol. 439. P. 419–425. (https://doi.org/10.1038/nature04421).
    15. Cheng Y.Q., Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 2011. Vol. 56. P. 379–473. (https://doi.org/10.1016/j.pmatsci.2010.12.002).
    16. Ma D., Stoica A.D., Wang X.L. Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater. 2009. Vol. 8(1). P. 30–34. (https://doi.org/10.1038/nmat2340).
    17. Boichyshyn L., Danyliak M.-O., Partyka М. Nanogeometry of surface of the Fe82Nb2B14REМ2 (REМ = Y, Gd, Tb, Dy) amourphous alloys. Visn. Lviv Univer. Ser. Chem. 2017. Vol. 58(2). P. 507–514 (in Ukrainian).
    18. Hennayaka H.M.M.N., Lee H.S., Yi S. Surface oxidation of the Fe based amorphous ribbon annealed at temperatures below the glass transition temperature. J. Alloys Compd. 2015. Vol. 618. P. 269–279. (https://doi.org/10.1016/j.jallcom.2014.08.160).
    19. Souza C.A.C., Ribeiro D.V., Kiminami C.S. Corrosion resistance of Fe–Cr-based amorphous alloys: An overview. J. Non-Crystal. Solids. 2016. Vol. 442. P. 56–66. (https://doi.org/10.1016/j.jnoncrysol.2016.04.009).
    20. Xiang Li, Xu Zhao, Fang Lv, Fang Liu, Yuxin Wang Improved corrosion resistance of new Fe-based amorphous alloys. Intern. J. Modern Physics B. 2017. Vol. 31. Р. 1744010. (https://doi.org/10.1142/S0217979217440106).
    21. Boichyshyn L.M., Hertsyk O.M., Lopachak M.M., Kovbuz M.O., Hula T.G., Pandyak N.L. Electrochemical properties of ternary amorphous alloys based on iron and cobalt in alkali solutions. Mater. Sci. 2020. Vol. 55(5). P. 703–709. (https://doi.org/10.1007/s11003-020-00361-w).
    22. Hertsyk О.М., Kovbuz М.О., Hula Т.H., Korniy S.А., Yezerska O.A., Pandiak N.L. Corrosion Resistance of Modified Amorphous Alloys Based on Iron in Sulfuric Acid. Mater. Sci. 2021. Vol. 56(6). P. 755–763. (https://doi.org/10.1007/s11003-021-00492-8).
    23. Mogilny G.S., Shanina B.D., Maslov V.V., Nosenko V.K., Shevchenko A.D., Gavriljuk V.G. Structure and magnetic anisotropy of rapidly quenched FeSiB ribbons. J. Non-Cryst. Sol. 2011. Vol. 357. P. 3237–3244. (https://doi.org/10.1016/j.jnoncrysol.2011.05.015).

How to Cite

Hertsyk O., Kovbuz M., Pandiak N., Tashak M. FEATURES OF THE FORMATION OF SURFACE LAYERS ON METALS Proc. Shevchenko Sci. Soc. Chem. Sci. 2022 Vol. LXX. P. 128-137.

Download the pdf