PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXX 2022

Vyacheslav PROTSENKO, Larysa PAVLENKO, Olexandr SUKHATSKYI, Tetyana BUTYRINA, Felix DANILOV

Ukrainian State University of Chemical Technology, Gagarin Ave., 8, 49005 Dnipro, Ukraine
e-mail: vprotsenko7@gmail.com

DOI: https://doi.org/10.37827/ntsh.chem.2022.70.119

ELECTRODEPOSITION OF NANOCRYSTALLINE NICKEL-IRON ALLOY FROM AN ELECTROLYTE BASED ON A NEW TYPE OF IONIC LIQUIDS – DEEP EUTECTIC SOLVENT

The paper reports the main features of electrochemical deposition of nickel-iron alloy from electrolyte based on the eutectic mixture of choline chloride and ethylene glycol, which is a typical representative of a new type of ionic liquids, deep eutectic solvents (DES). It is found that the iron content in the deposited alloy increases with both increasing the applied cathode current density and increasing the concentration of iron ions in the electrolyte and the introduction of water additives. Thus, variation in the current density and the concentration of water additive in electrolytes based on DES is the factor of influence on the kinetics of partial electrode reactions, and hence on the composition and properties of the coating.
It is shown that it is possible to deposit uniform coatings with iron content up to 10–13% from the investigated electrolyte containing water additive (up to 10 wt.%) at the deposition current density not exceeding 1–1.2 A/dm2. The current efficiency of the alloy deposition is close to the theoretical value (97–99%), i.e. the electrodeposition is practically not complicated by electrochemical processes involving components of a deep eutectic solvent.
The surface of pure nickel deposited from an electrolyte based on DES without additional water is quite uniform with a small number of defects, pitting and small pores, while coatings deposited from the electrolyte containing water additives are characterized by granular surface morphology with many asymmetric spheroidal crystallites. The electrodeposition of a nickel-iron alloy yields the surface built of irregular spheroids that overlap and form a scaly-like type of surface morphology.
Nickel-iron electrolytic coatings containing up to ~7% Fe, formed from the ethaline-based electrolyte, are nanocrystalline solutions of iron in nickel with a face-centered cubic nickel lattice and an average nanocrystallite size of about 6–15 nm.
Nickel-iron alloy coatings electrochemically deposited under the conditions established in this work may be considered as promising electrode materials for the creation of new cheap and highly efficient electrocatalysts for water electrolysis in hydrogen energy.

Keywords: electrodeposition, nickel-iron alloy, deep eutectic solvent, surface morphology, nanocrystalline structure

References:

    1. Oriňáková R., Turoňová A., Kladeková D., Gálová M., Smith R.M. Recent developments in the electrodeposition of nickel and some nickel-based alloys. J. Appl. Electrochem. 2006. Vol. 36. P. 957–972. (https://doi.org/10.1007/s10800-006-9162-7).
    2. Torabinejad V., Aliofkhazraei M., Assareh S., Allahyarzadeh M.H., Rouhaghdam A.S. Electrodeposition of Ni-Fe alloys, composites, and nano coatings – a review. J. Alloys Compd. 2017. Vol. 691. P. 841–859. (https://doi.org/10.1016/j.jallcom.2016.08.329).
    3. Rashmi D., Pavithra G.P., Praveen B.M., Devapal D. Development of nanocrystalline multilayer Ni–Fe alloy coatings: characterization and its corrosion behaviour at elevated temperature. Bull. Mater. Sci. 2020. Vol. 43. Art. No. 131. (https://doi.org/10.1007/s12034-020-02087-6).
    4. Matsui I., Kawakatsu T., Takigawa Y., Uesugi T., Higashi K. Fabrication of bulk nanocrystalline Fe–Ni alloys with high strength hand high ductility by an electrodeposition. Mater. Lett. 2014. Vol. 116. P. 71–74. (https://doi.org/10.1016/j.matlet.2013.10.108).
    5. Jinlong L., Yang M., Suzuki K., Miura H., Zhang Y. Comparison of corrosion resistance of electrodeposited pure Ni and nanocrystalline Ni–Fe alloy in borate buffer solution. Mater. Chem. Phys. 2017. Vol. 202. P. 15–21. (https://doi.org/10.1016/j.matchemphys.2017.09.005).
    6. Buccheri B., Ganci F., Patella B., Aiello G., Mandin P., Inguanta R. Ni–Fe alloy nanostructured electrodes for water splitting in alkaline electrolyser. Electrochim. Acta. 2021. Vol. 388. Art. No. 138588. (https://doi.org/10.1016/j.electacta.2021.138588).
    7. Smith E.L., Abbott A.P., Ryder K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014. Vol. 114. P. 11060–11082. (https://doi.org/10.1021/cr300162p).
    8. Hansen B.B., Spittle S., Chen B., Poe D., Zhang Y., Klein J.M., Horton A., Adhikari L., Zelovich T., Doherty B.W., Gurkan B., Maginn E.J., Ragauskas A., Dadmun M., Zawodzinski T.A., Baker G.A., Tuckerman M.E., Savinell R.F., Sangoro J.R. Deep eutectic solvents: a review of fundamentals and applications. Chem. Rev. 2021. Vol. 121. P. 1232–1285. (https://doi.org/10.1021/acs.chemrev.0c00385).
    9. Abbott A.P., Ballantyne A., Harris R.C., Juma J.A., Ryder K.S., Forrest G. A comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions. Electrochim. Acta. 2015. Vol. 176. P. 718–726. (https://doi.org/10.1016/j.electacta.2015.07.051).
    10. Gu C.D., You Y.H., Yu Y.L., Qu S.X., Tu J.P. Microstructure, nanoindentation, and electrochemical properties of the nanocrystalline nickel film electrodeposited from choline chloride–ethylene glycol. Surf. Coat. Technol. 2011. Vol. 205. P. 4928–4933. (https://doi.org/10.1016/j.surfcoat.2011.04.098).
    11. Danilov F.I., Bogdanov D.A., Smyrnova O.V., Korniy S.A., Protsenko V.S. Electrodeposition of Ni–Fe alloy from a choline chloride-containing ionic liquid. J. Solid State Electrochem. 2022. Vol. 26. P. 939–957. (https://doi.org/10.1007/s10008-022-05137-7).
    12. Oliveira F.G.S., Santos L.P.M., da Silva R.B., Correa M.A., Bohn F., Correia A.N., Vieira L., Vasconcelos I.F., de Lima-Neto P. FexNi1-x coatings electrodeposited from choline chloride-urea mixture: magnetic and electrocatalytic properties for water electrolysis. Mater. Chem. Phys. 2022. Vol. 279. Art. No. 125738. (https://doi.org/10.1016/j.matchemphys.2022.125738).
    13. Yanai T., Akiyoshi T., Yamaguchi T., Takashima K., Morimura T., Nakano M., Fukunaga H. Effect of primary amines on magnetic properties of Fe–Ni films electroplated in a DES-based plating bath. AIP Adv. 2018. Vol. 8. Art. No. 056106. (https://doi.org/10.1063/1.5007189).
    14. Zech N., Podlaha E.J., Landolt D. Anomalous codeposition of iron group metals. II. Mathematical model. J. Electrochem. Soc. 1999. Vol. 146. P. 2892–2900. (https://doi.org/10.1149/1.1392025).
    15. Protsenko V.S., Kityk A.A., Shaiderov D.A., Danilov F.I. Effect of water content on physicochemical properties and electrochemical behavior of ionic liquids containing choline chloride, ethylene glycol and hydrated nickel chloride. J. Mol. Liq. 2015. Vol. 212. P. 716–722. (https://doi.org/10.1016/j.molliq.2015.10.028).
    16. Danilov F.I., Protsenko V.S., Kityk A.A., Shaiderov D.A., Vasil'eva E.A., Pramod Kumar U., Joseph Kennady C. Electrodeposition of nanocrystalline nickel coatings from a deep eutectic solvent with water addition. Prot. Met. Phys. Chem. Surf. 2017. Vol. 53. P. 1131–1138. (https://doi.org/10.1134/S2070205118010203).
    17. Gong M., Wang D.Y., Chen C.C., Hwang B.J., Dai H. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016. Vol. 9. P. 28–46. (https://doi.org/10.1007/s12274-015-0965-x).
    18. Koo B., Yoo B. Electrodeposition of low-stress NiFe thin films from a highly acidic electrolyte. Surf. Coat. Technol. 2010. Vol. 205. P. 740–744. (https://doi.org/10.1016/j.surfcoat.2010.07.076).

How to Cite

Protsenko V., Pavlenko L., Sukhatskyi O., Butyrina T., Danilov F. ELECTRODEPOSITION OF NANOCRYSTALLINE NICKEL-IRON ALLOY FROM AN ELECTROLYTE BASED ON A NEW TYPE OF IONIC LIQUIDS – DEEP EUTECTIC SOLVENT Proc. Shevchenko Sci. Soc. Chem. Sci. 2022 Vol. LXX. P. 119-127.

Download the pdf