Iryna MOROZ, Vasylyna SHEMET, Olha HULAI
Lutsk National Technical University, st. Lvivska, 75, 43018 Lutsk, Ukraine е-mail: o.hulai@lntu.edu.ua
DOI: https://doi.org/10.37827/ntsh.chem.2024.75.078
VITAMIN C: STRUCTURE, BIOCHEMICAL SIGNIFICANCE, METHODS OF DETERMINATION
The role of vitamin C for the functioning of the human body is outlined. The antioxidant properties of vitamin C are thought to be a key factor in neutralizing free radicals and peroxide compounds, protecting cells from oxidative stress. It also replenishes other antioxidants, such as vitamins E and glutathione. It is a cofactor for enzymes involved in collagen synthesis. It is necessary for the normal functioning of the skin, bones, cartilage, tooth enamel and blood vessels. Due to the loss of the ability to independently produce ascorbic acid, people are completely dependent on the intake of vitamin C from food. The main food forms of vitamin C are L-ascorbic, D-ascorbic and dehydroascorbic acids. The content of vitamin C in vegetables and fruits and the norms of its consumption were analyzed. Vitamin C is an essential component of all green plants and the lowest daily human need for it (40 mg) can be obtained by eating any set of vegetables and fruits every day. Among the plants that are common in Europe, the highest content of the vitamin is inherent in rose hips and black currants. A relatively high content of ascorbic acid is found in strawberries, citrus fruits and various vegetables, in particular, in potatoes. The determination of vitamin C in food systems is a complex problem due to the oxidation of ascorbic acid, even at the sample preparation stage. The stability of L-ascorbic acid in aqueous solutions can be affected by a number of factors, including exposure to light rays, temperature increases, changes in pH, and the presence of oxygen and metal ions. Along with classical titrimetric methods, researchers use spectrophotometry, electrochemical and chromatographic methods, the advantages of which are high sensitivity, selectivity, expressiveness, and the possibility of automation. The property of L-ascorbic acid to participate in redox reactions is the basis of titrimetric methods, including iodometric titration (IODINE), dichlorophenol-indophenol titration (DCIP), titration with N-bromosuccinimide (NBS). Spectrophotometric studies are carried out at 530 nm using potassium permanganate as a chromogenic reagent. Electrochemical determination of vitamin C is carried out using mercury, gold, platinum and glass carbon electrodes. Ultra-efficient liquid chromatography (UPLC) and high-performance liquid chromatography (HPLC) are used. The UPLC method is believed to be faster, more sensitive, consumes less eluent, and is more environmentally friendly than the HPLC method The main reason for the deviation of the results and errors is the existence of vitamin C in natural objects in several forms with different activity and chemical resistance.
Keywords: ascorbic acid, vitamin C, antioxidant, methods of analysis.
References:
-
1. Granger M., Eck P. Dietary vitamin C in human health. Adv. Food Nutr. Res. 2018. Vol. 83. P. 281–310.
(https://doi.org/10.1016/bs.afnr.2017.11.006).
2. Monfort A., Wutz A. Breathing-in epigenetic change with vitamin C. EMBO Rep. 2013. Vol. 14. P. 337–346.
(https://doi.org/10.1038/embor.2013.29).
3. Juraschek S.P., Guallar E., Appel L.J., Miller E. R. Effects of vitamin C supplementation on blood pressure: a
meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012. Vol. 95(5). P. 1079–1088.
(https://doi.org/10.3945/ajcn.111.027995).
4. Young V.R. Evidence for a recommended dietary allowance for vitamin C from pharmacokinetics: A comment and
analysis. Proc. Natl. Acad. Sci. U.S.A. 1996. Vol. 93(25). P. 14344–14348.
(https://doi.org/10.1073/pnas.93.25.14344).
5. Frei B, Traber M. The new US dietary reference for vitamins C and E. Redox Rep. 2001. Vol. 6. P. 5–9.
(https://doi.org/10.1179/135100001101535978).
6. World Health Organization. Scurvy and its Prevention and Control in Major Emergencies/Prepared by Zita Weise
Prinzo; World Health Organization: Geneva, Switzerland, 1999. (https://iris.who.int/handle/10665/66962).
7. Padayatty S.J.; Levine M. Vitamin C: The known and the unknown and Goldilocks. Oral. Dis. 2016. Vol. 22. P.
463–493. (https://doi.org/10.1111/odi.12446).
8. Tsao C.S. An Overview of Ascorbic Acid Chemistry and Biochemistry. In Vitamin C in Health and Disease; Packer,
L., Fuchs, J., Eds.; Marcel Dekker: New York, NY, USA, 1997; pp. 25–58.
9. Linster C.L., Van Schaftingen E. Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J. 2007.
Vol. 274. P. 1–22. (https://doi.org/10.1111/j.1742-4658.2006.05607.x).
10. Spínola V., Llorent-Martínez E. J., Castilho P. C. Determination of vitamin C in foods: Current state of
method validation. J. Chromatogr. A. 2014. Vol. 1369. P. 2–17. (https://doi.org/10.1016/j.chroma.2014.09.087 ).
11. Carr A.C., Vissers M.C. Synthetic or food-derived vitamin C – are they equally bioavailable? Nutrients. 2013.
Vol. 5(11). P. 4284–4304. (https://doi.org/10.3390/nu5114284).
12. Cozzolino D., Phan A.D.T., Netzel M.E., Smyth,H., Sultanbawa Y. The use of vibrational spectroscopy to predict
vitamin C in Kakadu plum powders (Terminalia ferdinandiana Exell, Combretaceae). J. Sci. Food Agric. 2021. Vol.
101. P. 3208–3213. (https://doi.org/10.1002/jsfa.10950).
13. Zhou Y., Phan A.D.T., Akter S., Bobasa E.M., Seididamyeh M., Sivakumar D., Sultanbawa Y. Bioactive Properties
of Kakadu Plum-Blended Products. Molecules. 2023. Vol. 28(6). P. 2828. (https://doi.org/10.3390/molecules28062828).
14. Cunha-Santos E.C.E., Viganó J., Neves D.A., Martínez J., Godoy H.T. Vitamin C in camu-camu [Myrciaria dubia
(H.B.K.) McVaugh]: evaluation of extraction and analytical methods. Food research international (Ottawa, Ont.).
2019. Vol. 115. P. 160–166. (https://doi.org/10.1016/j.foodres.2018.08.031).
15. Mezadri T., Villaño D., Fernández-Pachón M.S., García-Parrilla M.C., Troncoso A.M. Antioxidant compounds and
antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. J. Food Compos. Anal. 2008.
Vol. 21. P. 282–290. (https://doi.org/10.1016/j.jfca.2008.02.002).
16. Cardoso P.C., Tomazini A.P.B., Stringheta P.C., Ribeiro S.M.R., Pinheiro-Sant'Ana H.M. Vitamin C and
carotenoids in organic and conventional fruits grown in Brazil. Food Chem. 2011. Vol. 126. P. 411–416.
(https://doi.org/10.1016/j.foodchem.2010.10.109).
17. Ariharan V.N., Kalirajan K., Devi V.N., Prasad P. An exotic fruit which forms the new natural source for
vitamin-C. Rasayan J. Chem. 2012. Vol. 5(3). P. 356.
18. Vagiri M., Ekholm A., Öberg E., Johansson E., Andersson S.C., Rumpunen K. Phenols and ascorbic acid in black
currants (Ribes nigrum L.): Variation due to genotype, location, and year. J. Agric. Food Chem. 2013. Vol. 61. P.
9298–9306. (https://doi.org/10.1021/jf402891s).
19. Krupa T., Latocha P., Liwińska A. Changes of physicochemical quality, phenolics and vitamin C content in hardy
kiwifruit (Actinidia arguta and its hybrid) during storage. Scientia Horticulturae. 2011. Vol. 130(2). P. 410–417.
(https://doi.org/10.1016/j.scienta.2011.06.044).
20. Dumbravă D.G., Moldovan C., Raba D.N., Popa M.V., Drugă M. Evaluation of antioxidant activity, polyphenols and
vitamin C content of some exotic fruits. J. Agroalimentary Proces. Techn. 2016. Vol. 22(1). P. 13–16.
21. Koyuncu M.A., Dilmaçünal T. Determination of vitamin C and organic acid changes in strawberry by HPLC during
cold storage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2010. Vol. 38(3). P. 95-98.
(https://doi.org/10.15835/nbha3834819).
22. Ellong E., Billard C., Adenet S., Rochefort K. Polyphenols, carotenoids, vitamin C content in tropical fruits
and vegetables and impact of processing methods. Food Sci. Nutr. 2015. Vol. 6. P. 299–313.
(https://doi.org/10.4236/fns.2015.63030).
23. Najwa F.R., Azrina A. Comparison of vitamin C content in citrus fruits by titration and high performance
liquid chromatography (HPLC) methods. Int. Food Res. J. 2017. Vol. 24(2). P. 726.
24. Njoku P.C., Ayuk A.A., Okoye C.V. Temperature effects on vitamin C content in citrus fruits. Pak. J. Nutr.
2011. Vol. 10. P. 1168–1169. (https://doi.org/10.3923/pjn.2011.1168.1169).
25. Kevers C., Pincemail J., Tabart J., Defraigne J.O., Dommes J. Influence of cultivar, harvest time, storage
conditions, and peeling on the antioxidant capacity and phenolic and ascorbic acid contents of apples and pears.
J. Agric. Food Chem. 2011. Vol. 59. P. 6165–6171. (https://doi.org/10.1021/jf201013k).
26. Roman I., Stănilă A., Stănilă S. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from
spontaneous flora of Transylvania. Chemistry central journal. 2013. Vol. 7. P. 1–10.
(https://doi.org/10.1186/1752-153X-7-73).
27. Ziegler S.J., Meier B., Sticker O. Fast and selective assay of L-ascorbic in rose hips by RP-HPLC coupled with
electrochemical and/or spectrophotometric detection. Planta Med. 1986. Vol. 5. P. 383–387.
(https://doi.org/10.1055/s-2007-969192).
28. Santos J., Herrero M., Mendiola J., Oliva-Teles M.T., Ibáñez E., Delerue-Matos C., Oliveira M. Fresh-cut
aromatic herbs: Nutritional quality stability during shelf-life. LWT. 2014. Vol. 59. P. 101–107.
(https://doi.org/10.1016/j.lwt.2014.05.019).
29. Colina-Coca C., de Ancos B., Sánchez-Moreno C. Nutritional Composition of Processed Onion:
S-Alk(en)yl-L-cysteine Sulfoxides, Organic Acids, Sugars, Minerals, and Vitamin C. Food Bioprocess Technol. 2014.
Vol. 7. P. 289–298. (https://doi.org/10.1007/s11947-013-1150-4).
30. Jurgiel-Malecka G., Gibczynska M., Nawrocka-Pezik M. Comparison of chemical composition of selected cultivars
of white, yellow and red onions. Bulgarian J. Agric. Sci.. 2015. Vol. 21(4). P. 736–741.
31. Rivelli A.R., Caruso M.C., De Maria S., Galgano F. Vitamin C content in leaves and roots of horseradish
(Armoracia rusticana): Seasonal variation in fresh tissues and retention as affected by storage conditions.
Emirates J. Food Agricult. 2017. Vol. 29(10). P. 799–806. (https://doi.org/10.9755/ejfa.2017.v29.i10.1294).
32. Johnson C.S., Steinberg F.M., Rucker R.B. Ascorbic acid. In: Handbook of Vitamins. Edited by: Rucker, R.B.,
Sultie, J.W., McCormick, D.B., Machlin, L.J. Marcel Dekker Inc, New York. 1998. P. 529–585.
33. Tincheva P.A. The effect of heating on the vitamin C content of selected vegetables. World J. Adv. Res. Rev.
2019. Vol. 3(3). P. 027–032. (https://doi.org/10.30574/wjarr.2019.3.3.0073).
34. Domínguez-Perles R., Mena P., García-Viguera C., Moreno D.A. Brassica foods as a dietary source of vitamin C:
A review. Crit. Rev. Food Sci. Nutr. 2014. Vol. 54. P. 1076–1091. (https://doi.org/10.1080/10408398.2011.626873).
35. Igbokwe G.E., Anagonye C.O. Determination of β-carotene & vitamin C content of fresh green pepper (capsicum
annnum), fresh red pepper (capsicum annum) and fresh tomatoes (solanumly copersicum) fruits. The Bioscientist
Journal. 2013. Vol. 1(1). P. 89–93.
36. Davey M.W., Montagu M.V., Inzé D., Sanmartin M., Kanellis A., Smirnoff N., Benzie I.J.J., Strain J.J., Favell
D., Fletcher J. Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing.
J. Sci. Food Agr. 2000. Vol. 80. P. 825–860.
(https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6).
37. Moser U., Bendich A. Vitamin C. In: Handbook of Vitamins. Edited by: Machlin, L.J. Marcel Dekker, New York.
1990. Ch5.
38. Vaz-Velho M.L., Pinheiro R., Rodrigues A.S. The Atlantic diet–Origin and features. Int. J. Food Stud. 2016.
Vol. 5(1). P. 106–119. ( https://doi.org/10.7455/ijfs/5.1.2016.a10).
39. Dale M.F.B., Griffiths D.W., Todd D.T. Effects of genotype, environment, and postharvest storage on the
total ascorbate content of potato (Solanum tuberosum) tubers. J. Agric. Food Chem. 2003. Vol. 51(1). P. 244–248.
( https://doi.org/10.1021/jf020547s).
40. Doseděl M., Jirkovský E., Macáková K., Krčmová L. K., Javorská L., Pourová J. On Behalf Of The Oemonom.
Vitamin C–sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients. 2021.
Vol. 13(2). P. 615. ( https://doi.org/10.3390/nu13020615).
41. Kostecka M., Szot I., Czernecki T., Szot P. Vitamin C content of new ecotypes of cornelian cherry (Cornus
mas L.) determined by various analytical methods. Acta Scientiarum Polonorum. Hortorum Cultus. 2017. Vol. 16
(4). P. 53–61. ( https://doi.org/10.24326/asphc.2017.4.6).
42. Elgailani I. E. H., Elkareem M. A. M. G., Noh E., Adam O., Alghamdi A. Comparison of two methods for the
determination of vitamin C (ascorbic acid) in some fruits. Am. J. Chem. 2017. Vol. 2(1). P. 1–7.
( https://doi.org/10.20448/812.2.1.1.7).
43. Tantray A. K., Dar S. A., Ahmad S., Bhat S. A. Spectrophotometric and titrimetric analysis of
phytoascorbate. J. of Pharmacognosy and Phytochem. 2017. Vol. 6(1). P. 27–31.
44. Popova A. Comparison of vitamin C content of commercially available fresh fruits. Asian Food Sci. J. 2019.
Vol. 13. P. 1–6. ( https://doi.org/10.9734/AFSJ/2019/v13i230100).
45. Devolli A., Stafasan M., Shahinasi E., Dara F., Hamiti H. Determination of Vitamin C content in commercial
fruit juices by volumetric and spectrophotometric methods. J. Hygienic Eng. Design. 2021. Vol. 16(34). P.
124–131.
46. Zhang W., Lin M., He H., Wang Y., Wang J., Liu H. Toward achieving rapid estimation of vitamin C in citrus
peels by NIR spectra coupled with a linear algorithm. Molecules. 2023. Vol. 28(4). P. 1681.
( https://doi.org/10.3390/molecules28041681).
47. Greenway G. M., Ongomo P. Determination of L-ascorbic acid in fruit and vegetable juices by flow injection
with immobilised ascorbate oxidase. Analyst. 1990. Vol. 115(10). P. 1297–1299.
(https://doi.org/10.1039/AN9901501297).
48. Skrovankova S., Mlcek J., Sochor J., Baron M., Kynicky J., Jurikova T. Determination of ascorbic acid by
electrochemical techniques and other methods. Inter. J. Electrochem. Sci. 2015. Vol. 10(3). P. 2421–2431.
(https://doi.org/10.1016/S1452-3981(23)04857-5).
49. Pisoschi A. M., Pop A., Serban A. I., Fafaneata C. Electrochemical methods for ascorbic acid determination.
Electrochimica Acta. 2014. Vol. 121. P. 443–460. (https://doi.org/10.1016/j.electacta.2013.12.127).
50. Hulai O.I., Shemet V.Ya, Klimovych O.S. Chromatographic Determination of the Chemical Composition of Apple
Chips Extract. Methods Objects Chem. Anal. 2023. Vol. 18(1). P. 33–41. (https://doi.org/10.17721/moca.2023.33-41).
51. Klimczak I., Gliszczyńska-Świgło A. Comparison of UPLC and HPLC methods for determination of vitamin C. Food
Chem. 2015. Vol. 175. P. 100–105. (https://doi.org/10.1016/j.foodchem.2014.11.104).
52. Al-Jaf Sabah H., Omer Khalid M. Accuracy improvement via novel ratiometry design in distance-based
microfluidic paper based analytical device: instrument-free point of care testing. RSC Adv. 2023. Vol. 13(23).
P. 15704–15713. (https://doi.org/10.1039/D3RA01601C).
How to Cite
MOROZ I., SHEMET V., HULAI O. VITAMIN C: STRUCTURE, BIOCHEMICAL SIGNIFICANCE, METHODS OF DETERMINATION. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. LXXV. P. 78-89.