PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXXV 2024

Galyna NYCHYPORUK1, Myroslava HORIACHA1,2, Anatoliy ZELINSKIY1, Vasyl ZAREMBA1

1Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine
e-mail: : halyna.nychyporuk@lnu.edu.ua

2Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtz str. 20, 01069 Dresden, Germany

DOI: https://doi.org/10.37827/ntsh.chem.2024.75.049

SOLID SOLUTIONS IN THE RNiIn–RNiGa (R = Pr, Ho) SYSTEMS

The PrNiIn–PrNiGa and HoNiIn–HoNiGa systems were investigated by X-ray powder diffraction and energy dispersive X-ray analysis in full concentration ranges at 870 K. The existence of two limited solid solutions in each system was observed and changes of unit cells parameters of the phases in them were determined.
The crystal structure of PrNiIn0.79Ga0.21 phase was refined based on the experimental hkl reflections using the FullProf package: ZrNiAl-type structure, space group P-62m, Pearson symbol hP9, a = 0.74795(15), c = 0.39454(8) nm, RBragg = 0.077, Rf = 0.085.
Partial substitution of indium by gallium atoms was confirmed by structure refinement from single crystal X-ray diffraction data: HoNiIn0.69Ga0.31 phase crystallizes with ZrNiAl-type structure (P-62m, hP9, a = 0.73604(3), c = 0.37241(2) nm, R1 = 0.0096 for 205 F2 values, 16 variables).

Keywords: indium, solid solution, powder method, single crystal, crystal structure..

References:

    1. Pearson’s Crystal Data – Crystal Structure Database for Inorganic Compounds. Ed. by Villars P., Cenzual K. – Release 2019/2020, ASM International, Materials Park. 2019.
    2. Gupta S., Suresh K. G. Review on magnetic and related properties of RTX compounds. J. Alloys Compd. 2015. Vol. 618. P. 562−606. (https://doi.org/10.1016/j.jallcom.2014.08.079).
    3. Ferro R., Marazza R., Rambaldi G. Equiatomic ternary phases in the alloys of the rare earths with indium and nickel or palladium. Z. Metallkd. 1974. Vol. 65. P. 37–39. (https://doi.org/10.1515/ijmr-1974-650106).
    4. Kalychak Ya. M., Zaremba V. I., Pöttgen R., Lukachuk M., Hoffmann R.-D. Rare Earth–Transition Metal–Indides. In: K. A. Gschneidner, Jr., J.-C. Bünzli, V. K. Pecharsky (Eds.). Handbook on the Physics and Chemistry of Rare Earths. Elsevier; Amsterdam, 2005. Vol. 34. P. 1–133. (https://doi.org/10.1016/S0168-1273(04)34001-8).
    5. Yarmolyuk Ya. P., Grin Yu. N., Gladyshevskii Ye. I. Crystal structure of RGaNi compounds (R = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y). Dop. AN Ukr RSR, Ser. A. 1979. Vol. 9. P. 771–775. (in Ukrainian).
    6. Zhang H., Xu Z. Y., Zheng X. Q., Shen J., Hu F. X., Sun J. R., Shen B. G. Magnetocaloric effects in RNiIn (R  =  Gd–Er) intermetallic compounds. J. Appl. Phys. 2011. Vol. 109. P. 123926-1–6. (https://doi.org/10.1063/1.3603044).
    7. Lapolli A. L., Saxena R. N., Mestnik-Filho J., Leite D. M. T., Carbonari A. W. Local investigation of magnetism at R and In sites in RNiIn (R = Gd, Tb, Dy, Ho) compounds. J. Appl. Phys. 2007. Vol. 101. P. 09D510-1–3. (https://doi.org/10.1063/1.2709421).
    8. Tyvanchuk Y.B., Kalychak Y.M., Gondek Ł., Rams M., Szytuła A., Tomkowicz Z. Magnetic properties of RNi1–xIn1+x (R = Gd–Er) compounds. J. Magn. Magn. Mater. 2004. Vol. 277. P. 368–378. (https://doi.org/10.1016/j.jmmm.2003.11.018).
    9. Gondek Ł., Szytuła A., Baran S., Rams M., Hernandez-Velasco J., Tyvanchuk Yu. Magnetic structures of non-stoichiometric hexagonal RNi1-xIn1+x (R = Dy, Ho, Er) compounds. J. Magn. Magn. Mater. 2004. Vol. 278. P. 392–396. (https://doi.org/10.1016/j.jmmm.2003.12.1324).
    10. Godnek Ł., Szytuła A., Kaczorowski D., Kalychak Ya., Penc B., Hernandez-Velasco J., Tyvanchuk Yu. Magnetism and electronic structure of RTIn (R = Ce, Pr, Nd; T = Ni, Cu, Pd, Au) ternary compounds. Chem. Met. Alloys 2008. Vol. 1. P. 92–96. (https://doi.org/10.30970/cma1.0011).
    11. Kotsanidis P., Semitelou I., Yakinthos J. K., Roudaut E. Sine modulated magnetic structure of HoNiGa. J. Magn. Magn. Mater. 1991. Vol. 102. P. 67–70. (https://doi.org/10.1016/0304-8853(91)90267-E).
    12. Sato Masashi, Denys R. V., Riabov A. B., Yartys V. A. Thermodynamic properties of the RENiIn hydrides with RE = La, Ce, Pr and Nd. J. Alloys Compd. 2005. Vol. 397(1–2). P. 99–103. (https://doi.org/10.1016/j.jallcom.2005.01.011).
    13. Zhang H., Xu Z. Y., Zheng X. Q., Shen J., Hu F. X., Sun J. R., Shen B. G. Magnetic properties and magnetocaloric effects in Gd1-xHoxNiIn intermetallic compounds. Solid State Commun. 2012. Vol. 152. P. 1734–1738. (https://doi.org/10.1016/j.ssc.2012.06.029).
    14. Kraus W., Nolze G. Powder Cell for Windows. Berlin, 1999.
    15. STOE WinXPOW, Version 1.2, STOE & CIE GmbH. Darmstadt, 2001.
    16. Rodríguez-Carvajal J. Recent Developments of the Program FULLPROF. Commission on Powder Diffraction (IUCr). Newsletter. 2001. Vol. 26. P. 12–19.
    17. Petříček V., Dušek M., Palatinus L. Crystallographic Computing System JANA 2006: Generalfeatures. Z. Kristallogr. 2014. Vol. 229(5). P. 345–352. (https://doi.org/10.1515/zkri-2014-1737).
    18. Krypyakevych P. I., Markiv V. Ya., Mel’nyk E. V. The crystal structure of the compounds ZrNiAl, ZrCuGa and their analogue. Dop. AN Ukr RSR, Ser. A. 1967. P. 750–753 (in Ukrainian).
    19. Yarmolyuk Ya. P., Grin Yu. N., Gladyshevskiy Ye. I. Crystal structure of R3Ni6Ga2 compounds (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y). Dop. AN Ukr RSR, Ser. A. 1978. Vol. 8. P. 759–763 (in Ukrainian).
    20. Hellner E. Das System Nickel-Indium. Z. Metallkd. 1950. Vol. 41. P. 401–406. (https://doi.org/10.1515/ijmr-1950-411106).
    21. Emsley J. The Elements: 2nd ed. Oxford: Clarendon Press. 1991. 251 p.
    22. Horiacha M., Savchuk I., Nychyporuk G., Serkiz R., Zaremba V. The YNiIn1-xMx (M = Al, Ga, Sb) systems. Visnyk Lviv Univ. Ser. Chem. 2018. Iss. 59(1). P. 67–75. (https://doi.org/10.30970/vch.5901.067).
    23. Horiacha M., Nychyporuk G., Pöttgen R., Zaremba V. Crystal structure of the YNi0.83Ga1.17 and YNiIn0.15Ga0.85 compounds. Proc. Shevchenko Sci. Soc. Chem. Sci. 2020. Vol. LX. P. 68–74. (https://doi.org/10.37827/ntsh.chem.2020.60.068).
    24. Zaremba N., Nychyporuk G., Schepilov Yu., Panakhyd O., Muts I., Hlukhyy V., Pavlyuk V. The CeNiIn1-xMx (M = Al, Ga) systems at 873 K. Ukr. Chem. J. 2018. Vol. 84(12). P. 76–84 (in Ukrainian).
    25. Horiacha M., Zinko L., Nychyporuk G., Serkiz R., Zaremba V. The GdTIn1-xMx (T = Ni, Cu; M = Al, Ga; 0<x<1) systems. Visnyk Lviv Univ. Ser. Chem. 2017. Iss. 58(1). P. 77–85 (in Ukrainian).
    26. Horiacha M., Nychyporuk G., Pöttgen R., Zaremba V. The solid solution TbNiIn1−xGax. Z. Naturforsch. 2021. Vol. 77B(2–3). P. 111–116. (https://doi.org/10.1515/znb-2021-0167).
    27. Zaremba N., Nychyporuk G., Horiacha M., Zaremba V. The RCuIn1–xGax (R=La, Ce) systems at 870 K. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021. Vol. LXVI. P. 117–124. (in Ukrainian). (https://doi.org/10.37827/ntsh.chem.2021.66.117).
    28. Horiacha M., Rinylo N., Nychyporuk G., Serkiz R., Pöttgen R., Zaremba V. The interaction of the components in YCuIn1-xMx (M=Al, Ga) systems. Ukr. Chem. J. 2018. Vol. 84(11-12). P. 31–37 (in Ukrainian).
    29. Horiacha M., Nychyporuk G., Pöttgen R., Zaremba V. The solid solutions TbCuIn1-xMx (M=Al, Ga). Z. Naturforsch. 2022. Vol. 77B(7–8). P. 549–554. (https://doi.org/10.1515/znb-2022-0042).
    30. Pustovoychenko M., Tyvanchuk Yu., Hayduk I., Kalychak Ya. Crystal structure of the RE11Ni4In9 compounds (RE=La, Ce, Pr, Nd, Sm, Gd, Tb and Y). Intermetallics. 2010. Vol. 18. P. 929–932. (https://doi.org/10.1016/j.intermet.2010.01.003).

How to Cite

NYCHYPORUK G., HORIACHA M., ZELINSKIY A., ZAREMBA V. SOLID SOLUTIONS IN THE RNiIn–RNiGa (R = Pr, Ho) SYSTEMS. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. LXXV. P. 49-58.

Download the pdf