Olga KLYUCHIVSKA1, Nazar MANKO1, Olexander TOLOK2, Оksana KOSTIV3, Svitlana BAGDAY3, Volodymyr VASYLECHKO3,4, Rostyslav STOIKA1, Yaroslav KALYCHAK3
1Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Str., 14/16, 79005 Lviv, Ukraine. zorepad1775@gmail.com
2Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, Pekarska Str., 50, 79010 Lviv, Ukraine.
3Ivan Franko National University of Lviv, Kyryla i Mefodia Str., 6, 79005 Lviv, Ukraine
4Lviv University of Trade and Economics, Samchuka Str., 9, 79011 Lviv, Ukraine
DOI: https://doi.org/10.37827/ntsh.chem.2024.75.152
NATURAL CLINOPTILOLITE PARTICLES DOPED WITH IONS OF TRANSITION METALS SUITABLE FOR TRAPPING CELLS AND MACROMOLECULS
Samples with luminescent properties are of interest for research purposes. Series of clinoptilolite samples doped with mono-, di-, and trivalent metal cations were analyzed in order to compare the biological effects of its doping with silver cations and other metals, in particular REE, on substrate-dependent (attached to surface) mammalian cells with different degree of the neoplastic transformation, as well as regarding the bacterial cells. The goal of the study was to obtain samples of clinoptilolite doped with REE cations suitable (low cytotoxicity) for interaction with cellular units in a liquid microenvironment. It was shown that luminescent REE (the most intense effects were observed in the case of Tb3+ [1] and Er3+) that were present in the zeolite structure changed their spectral characteristics upon interaction/binding with cellular units. That allowed real-time monitoring of their interaction via detection of luminescence (change in intensity level and appearance of new peaks). Luminescently active samples with a low cytotoxic effect were obtained, with an exception of silver-doped samples that were used to compare REE-dopped clinoptilolites with different properties (biotolerant or cytostatic), in relation to bacterial, yeast and mammalian cells with different levels of neoplastic transformation [1–3]. It was found that the order of magnitude increase in emission intensity in the long-wave spectrum region took place in case of erbium application. This phenomenon will be studied in our further research. The obtained results are the basis for the creation and manufacture of systems for separation or capture of biological (cell and macromolecules) units in technological devices for cleaning and conditioning liquids. In particular, there are significant prospects for the use of the obtained samples of clinoptiolites doped with REE for the further development of working surfaces for the immobilization of functional determinants (for example, recombinant enzymes) at the creation of medical equipment.
Keywords: natural clinoptilolite, transition metals, luminescence, culture of mammalian cells, microorganisms.
References:
-
1. Ivasechko I., Klyuchivska O., Vasylechko V., Vyviurska O., Kalychak Ya., Stoika R. Effect of clinoptilolite
doped with cations of d- and f-metals on viability of tumor cells depends on density of intercellular contacts and
rate of their growth . 2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP) IEEE
Xplore Digital Library 2023. (https://doi.org/10.1109/NAP59739.2023.10310761).
2. Zakordonskyi V., Vasylechko V., Staschuk P., Hryschuk G. Thermodesorption of water and adsorption properties of
Transcarpathian zeolites. Visn. Lviv. Univer. Ser. Khem. 2004. Vol. 44. P. 247–256 (in Ukrainian).
3. Słota E. T., Vasylechko V. O., Yaremko Z. M., Bagday S. R., Poddubnaya O., Puziy A. M. Neodymium sorption on
the Na-form of Transcarpathian clinoptilolite. Heliyon. 2023. Vol. 9(11). e21264.
(https://doi.org/10.1016/j.heliyon.2023.e21264).
4. Stashkiv O., Vasylechko V., Patsai I., Hryshchuk G. Concentration of Gd(III) on Transcarpathian clinoptilolite.
Visn. Lviv. Univer. Ser. Chem. 2018. Vol. 59(1). P. 196–209. (in Ukrainian) (https://doi.org/10.30970/vch.5901.196).
5. Stechynska E., Vasylechko V., Gryshchouk G., Patsay I. Preconcentration of Lutetium from Aqueous Solution by
Transcarpathian Clinoptilolite. Acta. Chim. Slov. 2020. Vol. 67(7). Р. 105–112.
(https://doi.org/10.17344/acsi.2019.5233).
6. Vasylechko V.O., Gryshchouk G.V., Zakordonskiy V.P., Patsay I.O., Len’ N.V., Vyviurska O.A. Sorption of terbium
on Transcarpathian clinoptilolite. Microporous and Mesoporous Mater. 2013. Vol. 167. P. 155–161.
(https://doi.org/10.1016/j.micromeso.2012.08.021).
7. Stashkiv O., Vasylechko V., Patsai I., Hryshchuk H. Concentration and determination of Yb(III) using
Transcarpathian clinoptilolite Visn. Lviv. Univer. Ser. Khem. 2019. Vol. 60(1). P. 179–190. (in Ukrainian)
(https://doi.org/10.30970/vch.6001.179).
8. Vasylechko V, Gryshchouk G, Mel’nyk A, Kalychak Ya. Pre-concentration and determination of cerium using
Transcarpathian clinoptilolite. NaUKMA Khim Nauky Technol. 2011. Vol. 118. P.10–16.
9. Vasylechko V, Fedorenko V, Gromyko O., Gryshchouk G., Kalychak Y., Zaporozhets O., Lototska M. Solid phase
extractive preconcentration of silver from aqueous samples and antimicrobial properties of the clinoptilolite–Ag
composite. Adsorpt. Sci. Technol. 2017. Vol. 35. P. 602–611. (https://doi.org/10.1177/0263617417703509).
10. Paryzhak S., Dumych T., Klyuchivska O., Manko N., Gryshchouk G., Vasylechko V., Stoika R. Silver doping of
clinoptilolite particles enhances their effects on immunocompetent mammalian cells and inhibition of Candida
albicans fungi. Appl. Nanosci. (Switzerland). 2023. Vol. 13. P. 4817–4826.
(https://doi.org/10.1007/s13204-022-02624-1).
11. Vasylechko V, Gryshchouk G, Lebedynets L., Kuz'ma Yu. B., Vasylechko L.O., Zakordonskiy V.P. Adsorption of
copper on transcarpathian clinoptilolite. Adsorpt Sci Technol. 1999. Vol. 17. P. 125–134.
(https://doi.org/10.1177/026361749901700206).
12. Vasilechko V., Hryshchuk G., Sukhnatskyi M., Sorption of Zn(II) on Transcarpathian clinoptilolite. Visn. Lviv.
Univer. Ser. Khem. 2011. Vol. 52(1). P. 148-158 (in Ukrainian).
13. Vasylechko V.O., Sak H.P., Gryshchouk G.V. Gloskovskii A., Kalychak Ya. M., Voloshinovskii A.S. Vistovskyy
V.V. Sorption-luminescence method for determination of cerium using Transcarpathian clinoptilolite. Appl. Nanosci.
2022. Vol. 12. P. 543–551. (https://doi.org/10.1007/s13204-021-01719-5).
14. Vasylechko V.O., Gryshchouk G.V., Zakordonskiy V.P., Vasylechko L.O., Schmidt M., Leshchack I.M., Kalychak
Ya.M., Bagday S.R. Sorption-luminescence method for determination of terbium using Transcarpathian clinoptilolite.
Talanta. 2017. Vol. 174. P. 486–492. (https://doi.org/10.1016/j.talanta.2017.06.052).
15. Stashkiv O., Vasylechko V., Gamernyk R., Kalychak Ya. Sorption-luminescence method for determination of
ytterbium. Mol. Cryst. Liq. Cryst. 2023. Vol. 768(3). Р. 28–39. ( https://doi.org/10.1080/15421406.2023.2253606).
16. https://www.sigmaaldrich.com/UA/en/applications/cell-culture-and-cell-culture-analysis/cell-analysis/cell-counting-and-health-analysis.
17. Yan B., Zhang H., Wang S., Ni J. Luminescence properties of rare-earth (Eu3+ and Tb3+) complexes with
paraaminobenzoic acid and 1,10-phenanthroline incorporated into a silica matrix by sol-gel method. Mater. Res.
Bull. 1998. Vol. 33(10). P. 1517–1525. ( https://doi.org/10.1016/S0025-5408(98)00133-0).
18. Dong H, Huang L, Zhao L, Zeng Q, Liu X, Sheng Y, Shi L, Wu G, Jiang H, Li F, Zhang L, Guo D, Li G, Hou W, Chen
H. A critical review of mineral-microbe interaction and co-evolution: mechanisms and applications. Natl. Sci. Rev.
2022. Vol. 9(10). nwac128. ( https://doi.org/10.1093/nsr/nwac128).
How to Cite
KLYUCHIVSKA O., MANKO N., TOLOK O., KOSTIV O., BAGDAY S., VASYLECHKO V., STOIKA R., KALYCHAK Ya. NATURAL CLINOPTILOLITE PARTICLES DOPED WITH IONS OF TRANSITION METALS SUITABLE FOR TRAPPING CELLS AND MACROMOLECULS. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. LXXV. P. 152-160.