Olena AKSIMENTYEVA1, Bohdan TSIZH2, Roman HOLYAKA3
1Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: aksimen@ukr.net
2Lviv National University of Veterinary Medicine and Biotechnology named after S.Z. Hzytskyi, Pekarska Str., 50, 79010 Lviv, Ukraine e-mail: tsizhb@ukr.net
3Lviv Polytechnic National University, S. Bandery Str., 12, 79013 Lviv, Ukraine e-mail: roman.l.holiaka@lpnu.ua
DOI: https://doi.org/10.37827/ntsh.chem.2024.75.144
CURRENT TRENDS IN THE DEVELOPMENT OF GAS DETECTORS OF TOXIC SUBSTANCES
The main trends in the creation of sensitive elements of gas sensors for the detection of toxic substances in polluted areas, in industrial premises and the atmosphere are analyzed. An important aspect of the application of gas sensors is the monitoring of the quality of food products, especially of animal origin, since the consumption of spoiled products can be a great danger to human health. The principles of operation and new directions in the field of gas sensor technologies based on thin films of polymers and their nanostructures and composites with semiconductor materials of various types are outlined. Modern trends in the creation of detectors of harmful substances involve the use of new sensor media based on nanostructured components of various nature and the formation of thin film structures, using new, advanced nanotechnological approaches. It is promising to use new compositions of indicator substances (copolymers and layered structures based on poly-3,4-ethylenedioxythiophene, polyanisidine, pentacene, carbon and silicon nanoclusters), and new technological methods of their formation ("in situ" polymerization, layered assembly, electropolymerization and etc.), which do not require the use of complex, expensive equipment. The principles of construction of multifunctional gas sensors are presented. The construction of a gas sensor is proposed, the information signal of which is determined by the selective absorption of the optical medium interacting with the gas. To obtain spectral characteristics, optocouples are used, which consist of controlled sources of optical radiation and photosensitive elements. The key issue for the successful implementation of all improvements in gas sensors and nanosensors at the current stage will remain the search for substances and structures that are highly sensitive to the action of toxic gases, including components of explosive and poisonous substances, and can selectively react to their presence by changing optical and/or electrical properties.
Keywords: detector, toxic gases, optical sensor, polymers, nanostructures.
References:
-
1. Pandey S. Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A
comprehensive review. J. Sci.: Advanced Materials and Devices. 2016. Vol. 1. P. 431–453.
(https://doi.org/10.1016/j.jsamd.2016.10.005).
2. Tsizh B., Aksimentyeva O., Holyaka R., Chokhan M. Gas sensors for analysis of food products: a monograph. Lviv.
SPOLOM, 2021. – 236 p. (in Ukrainian).
3. Gardner J.W. Review of Conventional Electronic Noses and Their Possible Application to the Detection of
Explosives. J.W. Gardner and J.Yinon (eds.). Electronic Noses & Sensors for the Detection of Explosives NATO
Science Series II: Mathematics, Physics and Chemistry, 2004. Vol 159. Springer, Dordrecht.
(https://doi.org/10.1007/1-4020-2319-7_1).
4. Snopok B. A., Kruglenko I. V. Multisensor systems for chemical analysis: state-of-the art in Electronic Nose
technology and new trends in machine olfaction. Thin Solid Films. 2002. Vol. 418(1). P. 21–41.
(https://doi.org/10.1016/S0040-6090(02)00581-3).
5. Burlachenko Yu. V., Snopok B. A. Multisensor arrays for gas analysis based on photo-sensitive organic
materials: An increase in the discriminating capacity under selective illumination conditions. J. Anal. Chem.
2008. Vol. 63(6). P. 557–565. (https://doi.org/10.1134/S1061934808060087).
6. Meng D., Fan J., Ma J., Du S., Geng J. The preparation and functional applications of carbon
nanomaterial/conjugated polymer composites. Compos. Commun. 2019. Vol. 12. P. 64–73.
(https://doi.org/10.1016/j.coco.2018.12.009).
7. Aksimentyeva O.I., Tsizh B.R., Horbenko Yu.Yu., Stepura A.L. Detection of organic solvent vapors by the optical
gas sensors based on polyaminoarenes. Scientific Messenger LNUVMB. Series: Food Technologies. 2021. Vol. 23(95).
P. 20–24. (https://doi.org/10.32718/nvlvet-f9504).
8. Yuan C. L., Chang C. P., Hong Y. S., Sung Y. Fabrication of MWNTs–PANI composite – a chemiresistive sensor
material for the detection of explosive gases. Mater. Sci.-Pol. 2016. Vol. 27(2). P. 509–520.
(https://doi.org/10.2478/s13536-013-0160-2).
9. To C. K., Ben-Jaber S., Parkin I.P. Developments in the Field of Explosive Trace Detection. ACS Nano. 2020.
Vol. 14(9). P. 10804–10833. (https://doi.org/10.1021/acsnano.0c01579).
10. Ricci P. P., Gregory O. J. Free standing thin‑film sensors for the trace detection of explosives. Scientific
Reports. 2021. Vol. 11. P. 6623. (https://doi.org/10.1038/s41598-021-86077-6).
11. Nynaru V., Jayamani E., Srinivasulu M. et al. Short review on conductive polymer composites as functional
materials. Key Eng. Mater. 2019. Vol. 796. P. 17–21. (https://doi.org/10.4028/www.scientific.net/KEM.796.17).
12. Zhou T., Xie X., Cai J. et al. Preparation of poly(o-toluidine)/TiO2 nanocomposite films and application for
humidity sensing. Polym. Bull. 2016. Vol. 73. P. 621–633. (https://doi.org/10.1007/s00289-015-1509-y).
13. Khan A.A., Shaheen S. Electrical conductivity, isothermal stability and amine sensing studies of a synthetic
poly-o-toluidine/multiwalled carbon nanotube/Sn(IV) tungstate composite ion exchanger doped with p-toluene
sulfonic acid. Anal. Methods. 2015. Vol. 7. P. 2077–2086. (https://doi.org/10.1039/C4AY02911A).
14. Dunst K., Karczewski J., Jasiński P. Nitrogen dioxide sensing properties of PEDOT polymer films. Sens.
Actuators B. 2017. Vol. 247. P. 108–113. (https://doi.org/10.1016/j.snb.2017.03.003).
15. Xu H., Ju D., Li W. et al. Low-working-temperature, fast-response-speed NO2 sensor with
nanoporous-SnO2/polyaniline double-layered film. Sens. Actuators B. 2016. Vol. 224. P. 654–660.
( https://doi.org/10.1016/j.snb.2015.10.076).
16. Aksimentyeva O.I., Horbenko Y.Y. The method of obtaining a sensitive element of an optical sensor of nitrogen
dioxide. Patent of Ukraine N 152270. Publ. 11.01.2023 (in Ukrainian).
17. Horbenko Yu., Aksimentyeva,O., Ivaniuk H. Structure, optical and sensory properties of
poly-3,4-ethylenedioxythiophene films doped with graphene oxide. Mol. Cryst. Liq. Cryst. 2021. Vol. 718(1). P.
36–41. ( https://doi.org/10.1080/15421406.2020.1861519).
18. Olenych I. B., Aksimentyeva O. I., Horbenko Y. Y., Tsizh B. R. Electrical and sensory properties of
silicon–graphene nanosystems. Appl. Nanosci. 2022. Vol. 12(3). P. 579–584.
( https://doi.org/10.1007/s13204-021-01698-7).
19. Olenych I. B., Aksimentyeva O. I., Tsizh B. R. et al. Poly(3,4-ethylenedioxy-thiophene)/carbon-based
nanocomposite for gas sensing. Mol. Cryst. Liq. Cryst. 2020. Vol. 701(1). P. 98–105.
( https://doi.org/10.1080/15421406.2020.1732567).
20. Horbenko Yu, Tsizh B., Dzeryn M. et al. Sensitive Elements of Gas sensors Based on Poly-o-toluidine/Silica
Nanoparticles Composite. Acta Physica Polonica A. 2022. Vol. 141(4). P. 386–389.
(https://doi.org/10.12693/APhysPolA.141.386).
21. Tsizh B., Aksimentyeva O., Horbenko Y., Holyaka R. Combined Polymer Nanostructures for Selective Gas Sensors .
Molec. Cryst. & Liq. Cryst. 2023. Vol. 767(1). P. 159–166. (https://doi.org/10.1080/15421406.2023.2224982).
22. Tsizh B., Aksimentyeva O. Ways to improve the parameters of optical gas sensors of ammonia based on
polyaniline. Sens. Actuator А Phys. 2020. Vol. 315. P. 112273. (https://doi.org/10.1016/j.sna.2020.112273).
23. Tsizh B.R., Aksimentyeva O.I. A method of ensuring selectivity control of an optical ammonia gas sensor in
modeling an optocoupler with a different spectral range. Patent of Ukraine № 146947. Publ. 31.03.2021 (in
Ukrainian).
24. Tsizh B.R., Aksimentyeva O.I., Chokhan M.I. A method of increasing the sensitivity of an optical ammonia gas
sensor. Patent of Ukraine № 131536. Publ.25.01.2019 (in Ukrainian).
25. Di Zazzo L., Magna G, Lucentini M., Stefanelli M., Paolesse R., Di Natale C. Gas Sensors Embedded in Face
Masks: a Proof of Concept Study. Chemosensors. 2021. Vol. 9. P. 356. (https://doi.org/10.3390/chemosensors9120356).
26. Chen Z. S., Chen Z., Song, Z. L., Ye W. H., Fan Z. Y. Smart gas sensor arrays powered by artificial
intelligence. J. Semicond. 2019. Vol. 40(11). P. 111601. (http://doi.org/10.1088/1674-4926/40/11/111601).
27. Zhu Y., Wu Y., Wang G., Wang Z., Tan Q. et al. A flexible capacitive pressure sensor based on an electrospun
polyimide nanofiber membrane. Organic Electronics. 2020. Vol. 84, P. 105759.
(https://doi.org/10.1016/j.orgel.2020.105759).
28. Kumar H., Shanmugam H. Nanosensors in food safety. Agri-India TODAY. 2024. Vol. 04(02). P. 88–98.
(https://doi.org/10.1016/B978-0-323-99546-7.00015-X).
29. Vistak M., Sushynskyi O., Mykytyuk Z., Aksimentyeva O., Semenova Y. Sensing of carbon monoxide with porous
Al2O3 intercalated with Fe3O4 nanoparticles-doped liquid crystal. Sens. Actuators A: Phys. 2015. Vol.235(1). P.
165–170.( https://doi.org/10.1016/j.sna.2015.10.001).
30. Toal S., Trogler W.C. Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem. 2006. Vol. 16.
P. 2871–2883. ( https://doi.org/10.1039/B517953J).
31. Ghoorchian A., Alizadeh N. Chemiresistor gas sensor based on sulfonated dye-doped modified conducting
polypyrrole film for highly sensitive detection of 2,4,6-trinitrotoluene in air. Sens. Actuators B: Chem. 2018.
Vol. 255(1). P. 826–835. ( https://doi.org/10.1016/j.snb.2017.08.093).
How to Cite
AKSIMENTYEVA O., TSIZH B., HOLYAKA R. CURRENT TRENDS IN THE DEVELOPMENT OF GAS DETECTORS OF TOXIC SUBSTANCES. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. LXXV. P. 144-151.