Yuliia STETSIV, Mykhaylo YATSYSHYN, Oleksandr RESHETNYAK
Ivan Franko Lviv National University, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine yuliia.stetsiv@lnu.edu.ua
DOI: https://doi.org/10.37827/ntsh.chem.2024.75.127
CATALYTIC DECOMPOSITION AND STABILIZATION OF PEROXYACETIC ACID SOLUTIONS
Polyaniline (PAn) films, doped with citric acid, were synthesized on a polyethylene terephthalate substrate by chemical oxidative polymerization using ammonium peroxydisulfate as an oxidant. Optical band gap, Urbach energy, steepness parameter, absorption coefficient, extinction coefficient, the number of carbon atoms in a cluster, skin depth, refractive index were calculated. The change in the optical band gap for the synthesized samples was evaluated and it was found that the band gap decreases with increasing thickness of polyaniline films deposited on the polyethylene terephthalate substrate. It is established that the optical energies of the band gap of polyaniline films, estimated by the results of optical absorption measurements using Tauc methods, are in the range of 2.45–2.04 eV for film thicknesses equal to 76–270 nm, respectively. The Urbach energy values of the polyaniline coatings ranged from 0.57 to 2.24 eV with increasing polyaniline film thickness, respectively.The number of carbon atoms per conjugated length, the number of carbon atoms per cluster and refractive index for the present samples were determined. Based on the correlations between the optical energy of the band gap and the refractive index of semiconductors using Moss, Ravindra, Ravindra-Gupta, Reddy-Ahammed, Gerve-Vandamme, Kumar-Singh, Annani and Duffy-Reddy ratios, the value of the refractive index of polyaniline films was calculated. These values of the refractive index of polyaniline films were compared with the values obtained from the experimental results. From the obtained results it is seen that the refractive index of polyaniline films increases with increasing polyaniline film thickness on the polyethylene terephthalate substrate. The values obtained from the Ravindra is the closest to the experimental ones.
Keywords: polyaniline, films, refractive index, band gap.
References:
-
1. Wadatkar N.S., Waghuley S.A. Characterizing the electro-optical properties of polyaniline/poly(vinyl acetate)
composite films as-synthesized through chemical route. Results Surf. Interfaces. 2021. Vol. 4. P. 100016.
(https://doi.org/10.1016/j.rsurfi.2021.100016).
2. Giri H., Dowell T.J., Almtiri M. et al. Chapter Polyaniline derivatives and their applications / Polyaniline –
From Synthesis to Practical Applications. 2023. P. 1–30. (htps://doi.org/ 10.5772/intechopen.1001940).
3. Sharma N., Singh A., Kumar N. et al. A review on polyaniline and its composites: from synthesis to properties
and progressive applications. J. Mater. Sci. 2024. Vol. 59. P. 6206–6244.
(htps://doi.org/10.1007/s10853-024-09562-z).
4. Majeed A.H., Mohammed L.A., Hammoodi O.G. et al. A Review on Polyaniline: Synthesis, Properties,
Nanocomposites, and Electrochemical Applications. Int. J. Polym. Sci. 2022. P. 1–19.
(https://doi.org/10.1155/2022/9047554).
5. Stetsiv Yu.A., Yatsyshyn M.M., Nykypanchuk D. et al. Characterization of polyaniline thin films prepared on
polyethylene terephthalate substrate. Polym. Bull. 2021. Vol. 78. P. 6251–6265.
(https://doi.org/10.1007/s00289-020-03426-7).
6. Shishkanova T.V., Matějka P., Král V. et al. Optimization of the thickness of a conducting polymer,
polyaniline, deposited on the surface of poly(vinyl chloride) membranes: a new way to improve their potentiometric
response. Anal. Chim. Acta. 2008. Vol. 624(2). P. 238–246. (https://doi.org/10.1016/j.aca.2008.07.001).
7. Kolhar P., Sannakki B., Verma M.et al. Synthesis, Characterization and Investigation of Optical and Electrical
Properties of Polyaniline/Nickel Ferrite Composites. Nanomaterials. 2023. Vol. 13(15). P. 2223.
(https://doi.org/10.3390/nano13152223).
8. Thakur Y.S., Acharya A.D., Sharma S. et al. Reinforcement of V2O5 nanoparticle in polyaniline to improve the
optical and UV-shielding properties. Results Opt. 2023. Vol. 11(1). P. 100400.
(https://doi.org/10.1016/j.rio.2023.100400).
9. Atta A., Abdelhamied M.M., Abdelreheem A.M. et al. Berber Flexible Methyl Cellulose/Polyaniline/Silver
Composite Films with Enhanced Linear and Nonlinear Optical Properties. Polymers. 2021. Vol. 13(8). P. 1228.
(https://doi.org/10.3390/polym13081225).
10. Al-Hada N.M., Al-Ghaili A.M., Baqer A.A. et al. Radiation-induced synthesis, electrical and optical
characterization of conducting polyaniline of PANI/PVA composites. Mater. Sci. Eng. B. 2020. Vol. 261. P. 114758.
(https://doi.org/10.1016/j.mseb.2020.114758).
11. Kahouli K., Kharrat A.B.J., Chaabouni S. Optical properties analysis of the new (C9H14N)3BiCl6 compound by
UV–visible measurements. Indian J. Phys. 2021. Vol. 95(12). P. 2797. (https://doi.org/10.1007/s12648-020-01942-w).
12. Bijwe D.R., Yawale S.S., Kumbharkhane A.C. et al. Complex dielectric behavior of doped polyaniline conducting
polymer at microwave frequencies using time domain reflectometry. Rev. Mex. Fis. 2019. Vol. 65. P. 590–600.
(https://doi.org/10.31349/revmexfis.65.590).
13. Gupta S., Choudhary D., Sarma A. Study of Carbonaceous Clusters in Irradiated Polycarbonate with UV–vis
Spectroscopy. J. Polym. Sci., Part B: Polym. Phys. 2000. Vol. 38(12). P. 1589–1594.
(https://doi.org/10.1002/(SICI)1099-0488(20000615)38:12<1589::AID-POLB30>3.0.CO;2-K).
14. Kumar R., Ali S.A., Mahur A.K. et al. Study of optical band gap and carbonaceous clusters in swift heavy ion
irradiated polymers with UV–Vis spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B. 2008. Vol. 266. P.
1788–1792. (https://doi.org/10.1016/j.nimb.2008.01.010).
15. Sharma E., Sharmahy P. Applicability of different models of energy bandgap and refractive index for
chalcogenide thin films. Mater. Today: Proc. 2020. Vol. 28. P. 92–95.
(https://doi.org/10.1016/j.matpr.2020.01.342).
16. Gomaa H.M., Yahia I.S., Zahran H.Y. Correlation between the static refractive index and the optical bandgap:
Review and new empirical approach. Physica B. 2021. Vol. 620. P. 413246.
(https://doi.org/10.1016/j.physb.2021.413246).
17. Cabuk M., Gündüz B. Change of optoelectronic parameters of the boric acid-doped polyaniline conducting
polymer with concentration. Appl. Surf. Sci. 2017. Vol. 532. P. 263–269.
(https://doi.org/10.1016/j.colsurfa.2017.05.008).
18. Muhammad F.F., Aziz S.B., Hussein S.A. Effect of the dopant salt on the optical parameters of PVA:NaNO3
solid polymer electrolyte. J. Mater. Sci: Mater. Electron. 2015. Vol. 26. P. 521–529.
(https://doi.org/10.1007/s10854-014-2430-0).
19. Beygisangchin M., Rashid S.A., Shafie S. et al. Polyaniline Synthesized by Different Dopants for Fluorene
Detection via Photoluminescence Spectroscopy. Materials. 2021. Vol. 14. P. 7382.
(https://doi.org/10.3390/ma14237382).
20. Zhaob Z., Zhoub J., Xiao H. et al. Creation of polyaniline-coated polyester fabrics with conductive,
electrothermal and energy-storage properties via micro-dissolution method. Mater. Today Commun. 2020. Vol. 24.
P. 101042. (https://doi.org/10.1016/j.mtcomm.2020.101042).
21. Saravanan S., Anantharaman M.R., Venkatachalam S. et al. Studies on the optical band gap and cluster size of
the polyaniline thin films irradiated with swift heavy Si ions. Vacuum. 2008. Vol. 82. P. 56–60.
(https://doi.org/10.1016/j.vacuum.2007.03.008).
22. Jin Z., Su Y., Duan Y. An improved optical pH sensor based on polyaniline. Sensor. Actuat. B-Chem. 2000.
Vol. 71(1–2). P. 118–122. (https://doi.org/10.1016/S0925-4005(00)00597-9).
23. Goktas H., Demircioglu Z., Sel K. et al. The optical properties of plasma polymerized polyaniline thin
films. Thin Solid Films. 2013. Vol. 548. P. 81–85. (https://doi.org/10.1016/j.tsf.2013.09.013).
24. Atta A., Abdel–Galil. A. Improved surface properties of PTFE polymer films using broad ion source. Indian J.
Pure Appl. Phys. 2016. Vol. 54(9). P. 551–556.
25. Matin R., Bhuiyan A.H. Infrared and ultraviolet–visible spectroscopic analyses of plasma polymerized 2,6
diethylaniline thin films. Thin Solid Films. 2013. Vol. 534. P. 100–106.
(https://doi.org/10.1016/j.tsf.2013.02.001).
26. Stetsiv Yu.A., Yatsyshyn М.M., Reshetnyak O.V. Energy band gap and the refractive index of polyaniline.
Proc. Shevchenko Sci. Soc. Chem. Sci. 2022. Vol. 70. P. 26–42 (in Ukraine). (https://doi.org/10.37827/ntsh.chem.2022.70.026).
27. Stetsiv Yu.A., Yatsyshyn М.M., Reshetnyak O.V. Optical parameters of polyaniline films on a polyethylene
substrate. The 8 th International scientific and practical conference «Topical issues of modern science, society
and education» (February 26-28, 2022) SPC «Sciconf.com.ua», Kharkiv, Ukraine. 2022. P. 220–223 (in Ukraine).
28. Stetsiv Yu.A., Yatsyshyn М.M., Korniy S. et al. Investigation of optoelectronic parameters of thin films of
polyaniline on acetate cellulose substrate. Visnyk Lviv Univ. Ser. Chem. 2023. Vol. 64. P. 270–281 (in
Ukraine). (https://doi.org/10.30970/vch.6401.270).
How to Cite
STETSIV Yu., YATSYSHYN M., RESHETNYAK O. OPTICAL PARAMETERS OF POLYANILINE FILMS ON A POLYETHYLENE TEREPHTHALATE SUBSTRATE. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. LXXV. P. 127-135.