Yaroslav KOVALYSHYN, Viktoriya LOVCHYTSKA, Maria BORNYAK, Oleksandr RESHETNYAK
Ivan Franko Lviv National University, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: yaroslav.kovalyshyn@lnu.edu.ua
DOI: https://doi.org/10.37827/ntsh.chem.2024.75.117
SYNTHESIS OF POLYPYROLE - CARBON NANOTUBE COMPOSITES BY CYCLIC VOLTAMPEROMETRY METHOD
Synthesis of polypyrrole-carbon nanotube composites was carried out by cyclic voltammetry from aqueous solutions at different ratios between components at room temperature. The influence of the composition of the reaction mixture and the speed of the potential sweep on the values of the potentials and currents of the oxidation peaks of polypyrrole was investigated. With an increase in the content of nanotubes in the range of 1−5%, an increase in the oxidation current of polypyrrole is observed at low potential sweep rates from 1.0 to 2.8 mA. This fact indicates a sharp increase in the amount of oxidized monomer and indicates the low resistance of the synthesized composites. A further increase in the CNT content leads to slower growth and even, in some cases, a decrease in currents. The largest amount of electrochemically active product is obtained at low potential sweep speeds and a CNT content of more than 5%. At lower CNT contents, their number is insufficient to ensure participation in the process of deeper coating layers. When the speed of the potential sweep increases for solutions with a CNT content of 0−2%, an increase in PPy oxidation currents is observed, and for higher CNT contents, irregular changes or a decrease in the current are observed. Regarding changes in the potentials of the corresponding peaks, at a potential sweep speed of 10 mV/s, there is a general tendency to decrease the potentials of the peaks with an increase in the content of nanotubes in the initial solution. This fact indicates a decrease in the resistance of the synthesized composites. An increase in the potential sweep speed up to 30 mV/s leads, on the contrary, to an increase in peak potentials. An increase in the potentials of the corresponding peaks indicates the occurrence of an additional potential jump in the layer deposited on the surface of the electrode, which can be explained by an increase in the resistance of the synthesized films as their thickness increases. At even higher potential sweep speeds (50–100 mV/s), the amount of oxidized pyrrole and the thickness of the films deposited on the electrode are small. Accordingly, their supports are close and no significant changes in the potentials of the oxidation peaks are observed.
Keywords: polypyrrole, carbon nanotubes, cyclic voltammetry.
References:
-
1. Nowicka A. M., Fau M., Rapecki T., Donten M. Polypyrrole-Au Nanoparticles Composite as Suitable Platform for
DNA Biosensor with Electrochemical Impedance Spectroscopy Detection. Electrochim. Acta. 2014. Vol. 140. P. 65–71.
(https://doi.org/10.1016/j.electacta.2014.03.187).
2. Kumar R., Senthamaraikannan P., Saravanakumar S.S. et al. 8 – Electroactive polymer composites and
applications, In: Bouhfid R., Abou el Kacem Qaiss, Jawaid M. Polymer Nanocomposite-Based Smart Materials. Woodhead
Publishing Series in Composites Science and Engineering, 2020. P. 149–156.
(https://doi.org/10.1016/B978-0-08-103013-4.00008-X).
3. Raza S., Li X., Soyekwo F. et al. A comprehensive overview of common conducting polymer-based nanocomposites;
Recent advances in design and applications. Europ. Polymer J. 2021. Vol. 160. P. 110773.
(https://doi.org/10.1016/j.eurpolymj.2021.110773).
4. Youssef G. Chapter 8 – Electroactive polymers. In: Youssef G. Applied Mechanics of Polymers Properties,
Processing, and Behavior Elsevier. USA: San Diego State University, 2022. P. 193–220.
(https://doi.org/10.1016/B978-0-12-821078-9.00010-7).
5. Charles L. B., João V. S., Rodrigo V. G. et al. A Review on Carbon Nanotubes Family of Nanomaterials and Their
Health Field. Charles. ACS Omega. 2024. Vol. 9(8). P. 8687–8708. (https://doi.org/10.1021/acsomega.3c08824).
6. Anzar N., Hasan R., Tyagi M. et al. Carbon nanotube - A review on Synthesis, Properties and plethora of
applications in the field of biomedical science. Sensors International. 2020. Vol. 1. P. 100003.
(https://doi.org/10.1016/j.sintl.2020.100003).
7. Rahaman M., Aldalbahi A. Chemical and Electrochemical Synthesis of Polypyrrole Using Carrageenan as a Dopant:
Polypyrrole/Multi-Walled Carbon Nanotube Nanocomposites. Polymers. 2018. Vol. 10(6). P. 632.
(https://doi.org/10.3390/polym10060632).
8. Zou H., Feng Ya., Tang X. et al. Interfacial thermal conduction mechanism of polypyrrole/carbon nanotube
composites. Compos. Sci. Technol. 2024. Vol. 245. P. 110346. (https://doi.org/10.1016/j.compscitech.2023.110346).
9. Yang L., Li M., Zhang Y. et al. Synthesis and characterization of polypyrrole nanotubes/multi-walled carbon
nanotubes composites with superior electrochemical performance. J. Mater. Sci: Mater. Electron. 2014. Vol. 25. P.
1047–1052. (https://doi.org/10.1007/s10854-013-1685-1).
10. Wang J., Cai K., Shen S., Yin J. Preparation and thermoelectric properties of multi-walled carbon
nanotubes/polypyrrole composites. Synth. Met. 2014. Vol. 195. P. 132–136.
(https://doi.org/10.1016/j.synthmet.2014.06.003).
11. Hermas A. A., Al-Juaid S. S., Al-Thabaiti S. A. et al. In situ electropolymerization of conducting
polypyrrole/carbon nanotubes composites on stainless steel: Role of carbon nanotubes types. Prog. Org. Coat. 2012.
Vol. 75(4). P. 404–410. (https://doi.org/10.1016/j.porgcoat.2012.07.006).
12. Karim M. R., Lee C. J., Chowdhury A. M. S. et al. Radiolytic synthesis of conducting polypyrrole/carbon
nanotube composites. Mat. Lett. 2007. Vol. 61(8–9). P. 1688–1692. (https://doi.org/10.1016/j.matlet.2006.07.100).
13. Lee Y.-K., Lee K.-J., Kim D.-S. et al. Polypyrrole-carbon nanotube composite films synthesized through
gas-phase polymerization. Synth. Met. 2010. Vol. 160(7–8). P. 814–818.
(https://doi.org/10.1016/j.synthmet.2010.01.028).
14. Jyothibasu J. P., Kuo D. W. & Lee R. H. Flexible and freestanding electrodes based on polypyrrole/carbon
nanotube/cellulose composites for supercapacitor application. Cellulose. 2019. Vol. 26. P. 4495–4513.
(https://doi.org/10.1007/s10570-019-02376-2).
15. Zou Y., Xiang C., Yang L., Sun L.-X. et al. A mediatorless microbial fuel cell using polypyrrole coated carbon
nanotubes composite as anode material. Int. J. Hydrogen Energy. 2008. Vol. 33(18). P. 4856–4862.
(https://doi.org/10.1016/j.ijhydene.2008.06.061).
16. Huang S., Wang X., Hu R. et al. Polypyrrole-S-coated MWCNT composites as cathode materials for lithium-sulfur
batteries. Ionics. 2020. Vol. 26. P. 5455–5462. (https://doi.org/10.1007/s11581-020-03736-w).
17. Huyen D.N., Tun N.T., Vinh T.D., Thien N.D. Synergistic Effects in the Gas Sensitivity of Polypyrrole/Single
Wall Carbon Nanotube Composites. Sensors. 2012. Vol. 12. P. 7965–7974. (https://doi.org/10.3390/s120607965).
18. Tu X., Xie Q., Jiang S., Yao S. Electrochemical quartz crystal impedance study on the overoxidation of
polypyrrole–carbon nanotubes composite film for amperometric detection of dopamine. Biosens. Bioelectron. 2007.
Vol. 22(12). P. 2819–2826. (https://doi.org/10.1016/j.bios.2006.11.022).
19. Zhang K., Chen X., Gao X. et al. Preparation and microwave absorption properties of carbon nanotubes/iron
oxide/polypyrrole/carbon composites. Synth. Met. 2020. Vol. 260. P. 116282.
(https://doi.org/10.1016/j.synthmet.2019.116282).
20. Yang R.-B., Reddy P. M., Chang C.-J. et al. Synthesis and characterization of Fe3O4/polypyrrole/carbon
nanotube composites with tunable microwave absorption properties: Role of carbon nanotube and polypyrrole content.
Chem. Eng. J. 2016. Vol. 285. P. 497–507. (https://doi.org/10.1016/j.cej.2015.10.031).
21. Cai Y., Wang Y., Han X. et al. Optimization on electrode assemblies based on ion-doped polypyrrole/carbon
nanotube composite in capacitive deionization process. J. Electroanal. Chem. 2016. Vol. 768. P. 72–80.
(https://doi.org/10.1016/j.jelechem.2016.02.041).
22. Wang Y., Zhang L., Wu Y. et al. Polypyrrole/carbon nanotube composites as cathode material for performance
enhancing of capacitive deionization technology. Desalination. 2014. Vol. 354. P. 62¬67.
(https://doi.org/10.1016/j.desal.2014.09.021).
23. Ioniţă M., Prună A. Polypyrrole/carbon nanotube composites: Molecular modeling and experimental investigation
as anti-corrosive coating. Prog. Org. Coat. 2011. Vol. 72(4). P. 647–652.
( https://doi.org/10.1016/j.porgcoat.2011.07.007).
24. Lu Y., Li T., Zhao X. et al. Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for
neural interfaces. Biomaterials. 2010. Vol. 31(19). P. 5169–5181.
( https://doi.org/10.1016/j.biomaterials.2010.03.022).
25. Hansen G. H., Henriksen R. M., Kamounah F. S. et al. Oxidative coupling and polymerization of pyrroles: Part
I. The electrochemical oxidation of 2,4-dimethyl-3-ethylpyrrole in acetonitrile. Electrochim. Acta. 2005. Vol.
50(25–26). P. 4936–4955. ( https://doi.org/10.1016/j.electacta.2005.02.076).
How to Cite
KOVALYSHYN Ya., LOVCHYTSKA V., BORNYAK M., RESHETNYAK O. SYNTHESIS OF POLYPYROLE - CARBON NANOTUBE COMPOSITES BY CYCLIC VOLTAMPEROMETRY METHOD. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. LXXV. P. 117-126.