Mariia SYDORKO1, Solomia PALKA1, Mykhaylo YATSYSHYN1, Anatoliy ZELINSKIY1, Natalia DUMANCHUK2, Oleksandr TIMOSHUK1, Oleksandr RESHETNYAK1
1Ivan Franko National University of Lviv , Kyryla i Mephodia Str., 6, 79005 Lviv, Ukraine e-mail: mariia.sydorko@lnu.edu.ua
2L’viv Medical Institute, Polishchuka Str., 76, 79015 L’viv, Ukraine e-mail: nataliya.dumanchuk@ukr.net
DOI: https://doi.org/10.37827/ntsh.chem.2024.75.100
STUDY OF ADSORPTION OF CrО42- AND Cr2О72- BY POLYANILINE FROM AQUEOUS SOLUTIONS
The optical properties of aqueous solutions of chromate CrО42- and dichromate Cr2О72- ions were studied. Optical spectra were used to study the adsorption of chromate CrО42- and dichromate Cr2О72- ions by a sample of polyaniline (PAn) from aqueous solutions of different concentrations. It was established that the removal and adsorption of CrО42- and Cr2О72- by the PAn sample depends on the concentration of oxyanions in the initial solutions. Adsorption studies of PAn sample with respect to oxyanions CrО42- and Cr2О72- were carried out from solutions with concentrations of 50, 100, 150, 200 and 250 mg/L. Examination of the samples after the adsorption tests revealed that the polyaniline sample retains adsorbed chromium, apparently in the Cr(III) state. The analysis of SEM-images, EDX-spectra and maps of elements proves that the distribution of adsorbed chromium is practically uniform over the surface of the adsorbent, and the intensity of its signal on the elemental maps depends on the initial concentrations of solutions of oxyanions CrО42- and Cr2О72-. Examination of the PAn sample using SEM-EDX spectra before and after adsorption revealed that the morphologies of the samples differ. The analysis of the EDX spectra of the elemental composition of the samples after adsorption of CrО42- and Cr2О72- confirmed that they contain, in addition to the PAn elements, also chromium. The distribution of chemical elements in the samples after adsorption revealed that they are almost uniformly distributed surfaces, and the intensity of its signal on EDX spectra depends on the initial concentrations of oxyanion solutions CrО42- and Cr2О72-. The value of CrО42- adsorption by the PAn sample is almost twice as small as the value of Cr2О72- adsorption. By comparing the contents of atoms of elements, in particular sulfur (S) and oxygen (O), before and after adsorption, it was found that S is replaced by Cr, and the content of O slightly increases with an increase in the initial concentration of Cr(VI) in the solutions.
Keywords: chromate, dichromate anions, polyaniline, adsorption.
References:
-
1. Xia S., Song Z., Jeyakumar P. et al. A critical review on bioremediation technologies for Cr(VI)-contaminated
soils and wastewater. Crit. Rev. Environ. Sci. Technol. 2019. Vol. 49(12). P. 1027-1078.
(https://doi.org/10.1080/10643389.2018.1564526).
2. Gorny J., Billon G., Noiriel C. et al. Chromium behavior in aquatic environments: A review. Environ. Rev. 2016.
Vol. 24(4). P. 503-516. (https://doi.org/10.1139/er-2016-0012).
3. Fenti A., Chianese S., Iovino P. et al. Cr(VI) Sorption from Aqueous Solution: A Review. Appl. Sci. 2020. Vol.
10(18). P. 6477–6498. (https://doi.org/10.3390/app10186477).
4. Li Y., Gao B., Wu T. et al. Hexavalent chromium removal from aqueous solution by adsorption on aluminum
magnesium mixed hydroxide. Water. Res. 2009. Vol. 43(12). P. 3067-3075.
(https://doi.org/10.1016/j.watres.2009.04.008).
5. Zhitkovich A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011. Vol.
24. P. 1617-1625. (https://doi.org/10.1021/tx200251t).
6. Liu B., Xin Y.-N., Zou J. et al. Removal of Chromium Species by Adsorption: Fundamental Principles, Newly
Developed Adsorbents and Future Perspectives. Molecules. 2023. Vol. 28. P. 639-668.
(https://doi.org/10.3390/molecules28020639 ).
7. Zhao W., Huang X., Gong J. et al. Influence of aquifer heterogeneity on Cr(VI) diffusion and removal from
groundwater. Environ Sci. Pollut. Res. 2022. Vol. 29. P. 3918–3929. (https://doi.org/10.1007/s11356-021-15803-4).
8. Wang J., Zhang K.K., Zhao L. Sono-assisted synthesis of nanostructured polyaniline for adsorption of aqueous
Cr(VI): effect of protonic acids. Chem. Eng. J. 2014. Vol. 239. P. 123–131.
(https://doi.org/10.1016/j.cej.2013.11.006).
9. Wu H., Wang Q., Fei G.T. et al. Preparation of Hollow Polyaniline Micro/Nanospheres and Their Removal Capacity
of Cr(VI) from Wastewater. Nanoscale. Res. Lett. 2018. Vol. 13(10). P. 401‒419.
(https://doi.org/10.1186/s11671-018-2815-8).
10. Zhao Z, Yang Y, Xu L. et al. Amino Acid-Doped Polyaniline Nanotubes as Efficient Adsorbent for Wastewater
Treatment. J. Chem. 2022. Vol. 5(23). P. 1-12. (https://doi.org/10.1155/2022/2041512).
11. Qiu B., Xu C., Su D. et al. Polyaniline Coating with Various Substrates for Hexavalent Chromium Removal. Appl.
Surf. Sci. 2015. Vol. 334. P. 7–14. (https://doi.org/10.1016/j.apsusc.2014.07.039).
12. Jain P., Varshney S., Srivastava S. Site-specific functionalization for chemical speciation of Cr(III) and
Cr(VI) using polyaniline impregnated nanocellulose composite: equilibrium, kinetic, and thermodynamic modeling.
Appl. Water Sci. 2017. Vol. 7(4). P. 1827–1839. (https://doi.org/10.1007/s13201-015-0356-1).
13. Ding J., Pu L., Wang Y. et al. Adsorption and Reduction of Cr(VI) together with Cr(III) Sequestration by
Polyaniline Confined in Pores of Polystyrene Beads. Environ. Sci. Technol. 2018. P. 1–29.
(https://doi.org/10.1021/acs.est.8b02566).
14. Li Z., Hong H. Retardation of chromate through packed columns of surfactant-modified zeolite. J. Hazard.
Mater. 2009. Vol. 162(2–3). P. 1487-1493. (https://doi.org/10.1016/j.jhazmat.2008.06.061).
15. Zeng Y., Woo H., Lee G., Park J. Removal of chromate from water using surfactant modified Pohang
clinoptilolite and Haruna chabazite. Desalination. 2010. Vol. 257(1–3). P. 102–109.
(https://doi.org/10.1021/es00052a01710.1016/j.desal.2010.02.039).
16. Konradt N., Dillmann S., Becker J., et al. Removal of Chromium Species from Low-Contaminated Raw Water by
Different Drinking Water Treatment Processes. Water. 2023. Vol. 15. P. 516. (https://doi.org/10.3390/w15030516).
17. Chen J., Hong X., Xie Q. et al. Highly efficient removal of chromium(VI) from aqueous solution using
polyaniline/sepiolite nanofibers. Water Sci. Technol. 2014. Vol. 70(7). P. 1236–1243.
(https://doi.org/10.2166/wst.2014.361).
18. Mthombeni N.H., Mbakop S., Rays S.C. et al. Highly efficient removal of chromium (VI) through adsorption and
reduction: a column dynamic study using magnetized natural zeolite-polypyrrole composite. J. Environ. Chem. Eng.
2018. Vol. 6(4). P. 4008-4017. (https://doi.org/10.1016/j.jece.2018.05.038).
19. Minisy I.M., Taboubi O., Hromádková J. One-Step Accelerated Synthesis of Conducting Polymer/Silver Composites
and Their Catalytic Reduction of Cr(VI) Ions and p-Nitrophenol. Polymers. 2023. Vol. 15(10). P. 2366.
(https://doi.org/10.3390/polym15102366).
20. Sydorko M.S., Yatsyshyn M.M., Marchuk I.E. et al. Zeolite/polyaniline composite: synthesis and adsorptive
properties regarding Cr(VI) from aqueous solutions. Polymer J. 2023. Vol. 45(1). P. 69–78.
(https://doi.org/10.15407/polymerj.15.01.069).
21. Kohila N., Subramaniam P. Removal of Cr(VI) using polyaniline based Sn(IV), Ce(IV) and Bi(III) iodomolybdate
hybrid ion exchangers: Mechanistic and comparative study. J. Environ. Chem. Eng. 2020. Vol. 8(5). P. 104376.
(https://doi.org/10.1016/j.jece.2020.104376).
22. Dewa L., Tichapondwa S.M., Mhike W. Adsorption of hexavalent chromium from wastewater using polyaniline-coated
microcrystalline cellulose nanocomposites. RSC Adv. 2024. Vol. 14. P. 6603–6616.
(https://doi.org/10.1039/d3ra08027g).
23. Adegoke H.I., AmooAdekola F., Fatoki O.S., Ximba B.J. Adsorption of Cr(VI) on synthetic hematite (α-Fe2O3)
nanoparticles of different morphologies. Korean J. Chem. Eng. 2014. Vol. 31(1). P. 142–154.
(https://doi.org/10.1007/s11814-013-0204-7).
24. Sydorko M., Yatsyshyn M., Zelinskyi A. et al. Cr(VI) adsorbent based on zeolite and polyaniline. Proc.
Shevchenko Sci. Soc. Chem. 2023. Vol. 73. P. 114-135. (https://doi.org/10.37827/ntsh.chem.2023.73.114).
25. Sydorko M., Nesterivska S., Yatsyshyn M., Zelinskyi A. et al. Removal of Cr(VI) by polyaniline and
glauconite/polyaniline-sulfatic acid composite. Visnyk Lviv Univ. Ser. Chem. 2023. Vol. 64. P. 290-304.
(https://doi.org/10.30970/vch.6401.290).
How to Cite
SYDORKO M., PALKA S., YATSYSHYN M., ZELINSKIY A., DUMANCHUK N., TIMOSHUK O., RESHETNYAK O. STUDY OF ADSORPTION OF CrО42- AND Cr2О72- BY POLYANILINE FROM AQUEOUS SOLUTIONS. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. LXXV. P. 100-116.