Mariia SYDORKO1, Yuliia STETSIV1, Mykhaylo YATSYSHYN1, Anatoliy ZELINSKIY1, Natalia DUMANCHUK2, Andriy BRYHAS1, Oleksandr RESHETNYAK1
1Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: mariia.sydorko@lnu.edu.ua
2L’viv Medical University, Polishchuka Str., 76, 79015 L’viv, Ukraine e-mail: nataliya.dumanchuk@ukr.net
DOI:
ADSORPTION REMOVAL OF Cr2О72- BY GLAUCONITE/POLYANILINE COMPOSITES FROM AQUEOUS SOLUTIONS
The adsorption removal of Cr(VI) from model aqueous solutions by glauconite/polyaniline (Gl/PAn) composites at different mass ratios of Gl:PAn was studied. Gl/PAn composites were obtained by one-step in situ synthesis by oxidation of aniline (An) with ammonium peroxodisulfate (APS) in aqueous solutions of sulfuric acid in the presence of glauconite. The results of the adsorption removal of Cr(VI) from model aqueous solutions by Gl/PAn composites were compared with the results of the removal of Cr(VI) by a PAn sample. The main adsorbent of Cr(VI) is polyaniline, and glauconite is its matrix-carrier. The study of the adsorption removal of Cr(VI) from model aqueous solutions by samples of Gl/PAn composites at different ratios of Gl:PAn showed that with an increase in the Gl content, the percentage of removal decreases. The increase in the initial concentrations of Cr(VI) in the initial solutions leads to the disaggregation of the Gl/PAn composites during the adsorption process. Energy-dispersive X-ray spectral analysis of the elemental composition of the samples after adsorption confirmed that they contain chromium. Analysis of the distribution maps of the elements in the samples revealed that they are almost evenly distributed over their surface. At the same time, the dispersed particles of glauconite are covered with polyaniline during the synthesis of the composites. With a high content of glauconite in the composition of the composites, and, accordingly, a lower content of polyaniline, as the main adsorbent of Cr(VI), the percentage of removal is low, which is due to an insufficient amount of adsorbent. The process of adsorption removal of Cr(VI) is chemisorption and is accompanied by partial oxidation of the emeraldine form of polyaniline to the pernigraniline form. Based on the results of UV-V spectral studies, namely changes in absorption intensity over time, the apparent sorption constants of Cr(VI) by adsorbent samples were determined. The study of adsorbent samples before and after adsorption was carried out using scanning electron microscopy (SEM), EDX analysis, and chemical element mapping (CE).
Keywords: glauconite, polyaniline, glauconite/polyaniline, chromium, removal.
References:
-
1. Kiliaris P., Papaspyrides C.D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy.
Prog. Polym. Sci. 2010. Vol. 35(7). P. 902–958. (https://doi.org/10.1016/j.progpolymsci.2010.03.001).
2. Ayalew A.A. A critical review on clay-based nanocomposite particles for application of wastewater treatment.
Water Sci. Technol. 2022. Vol. 85(10). P. 30023022. https://doi.org/ 10.2166/wst.2022.150.
3. Beygisangchin M., Baghdadi A.H., Kamarudin S.K. et al. Recent progress in polyaniline and its composites;
Synthesis, properties, and applications. Eur. Polym. J. 2024. Vol. 210. P. 112948.
https://doi.org/10.1016/j.eurpolymj.2024.112948.
4. Ćirić-Marjanović G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects,
properties and applications. Synth. Met. 2013. Vol. 177. P. 1–47. https://doi.org/10.1016/j.synthmet.2013.06.004.
5. Yan Y., Jiang Y., Ng E.L.L. et al. Progress and opportunities in additive manufacturing of electrically
conductive polymer composites. Mater. Today Adv. 2023. Vol. 17. P. 100333.
https://doi.org/10.1016/j.mtadv.2022.100333.
6. Sharma N., Singh A., Kumar N. et al. A review on polyaniline and its composites: from synthesis to properties
and progressive applications. J. Mater. Sci. 2024. Vol. 59. P. 6206–6244.
https://doi.org/10.1007/s10853-024-09562-z.
7. Jadoun S., Fuentes J.P., Urbano B.F., Yáñez J. A review on adsorption of heavy metals from wastewater using
conducting polymer-based materials. J. Environ. Chem. Eng. 2023. Vol. 11(1). P. 109226.
https://doi.org/10.1016/j.jece.2022.109226.
8. Samadi A., Xie M., Li J. et al. Polyaniline-based adsorbents for aqueous pollutants removal: A review. Chem.
Eng. J. 2021. Vol. 418. P. 129425. https://doi.org/10.1016/j.cej.2021.129425.
9. Murray H.H. Chapter 2. Structure and Composition of the Clay Minerals and their Physical and Chemical
Properties. Dev. Clay Sci. 2006. Vol. 2. P. 7–31. https://doi.org/10.1016/S1572-4352(06)02002-2.
10. Ryabchenko K., Yanovska E., Melnyk M. et al. Adsorption properties of bentonite with in situ immobilized
polyaniline towards anionic forms of Cr(VI), Mo(VI), W(VI), V(V). Mater. Sci. 2016. Vol. 22(2) P. 249–255.
https://eprints.zu.edu.ua/id/eprint/22756.
11. Ryabchenko K., Yanovska E., Tertykh V. et al. Adsorption Properties of Vermiculite with In Situ Immobilized
Polyaniline with Respect to Cr(VI), Mo(VI), W(VI), V(V) and P(V) Anions. Adsorpt. Sci. Technol. 2014. Vol. 32(1).
P. 89–99. https://doi.org/10.1260/0263-6174.32.1.89.
12. Tianzhu Z., Cuiping L. Huiling J. et al. Effective Adsorption/Reduction of Cr(VI) Oxyanion by
Halloysite@Polyaniline Hybrid Nanotubes. ACS Appl. Mater. Interfaces. 2017. Vol. 9(7). P. 6030–6043.
https://doi.org/10.1021/acsami.6b14079.
13. Sydorko M., Nesterivs’ka S., Yatsyshyn М. et al. Properties of natural mineral/polyanilyline composites doped
by sulfuric acid. Visn. Lviv Univ. Ser. Chem. 2018. Iss. 61(2). P. 321–334. https:/doi.org/10.30970/vch.6102.321.
14. Chen J., Hong X., Zhao Y. et al. Preparation of flake-like polyaniline/montmorillonite nanocomposites and
their application for removal of Cr(VI) ions in aqueous solution. J. Mater. Sci. 2013. Vol. 48(21). P. 7708–7717.
https://doi.org/10.1007/s10853-013-7591-3.
15. Wang J.H., Han X.J., Ji Y.F., Ma H.R. Adsorption of Cr(VI) from aqueous solution onto short-chain
polyaniline/palygorskite composites. Desalin. Water Treat. 2015. Vol. 56(2). P. 356–365.
https://doi.org/10.1080/19443994.2014.935805.
16. Chen J., Hong X.Q., Xie Q.D. et al. Highly efficient removal of chromium(VI) from aqueous solution using
polyaniline/sepiolite nanofibers. Water. Sci. Technol. 2014. Vol. 70(7). P. 1236–1243.
https://doi.org/10.2166/wst.2014.361.
17. Jiang Y., Liu Z., Zeng G. et al. Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous
solution: a mini review. Environ. Sci. Pollut. R. 2018. Vol. 25(7). P. 6158–6174.
https://doi.org/10.1007/s11356-017-1188-3.
18. Eskandari E., Kosari M., Farahani D.A. et al. A Review on Polyaniline-Based Materials Applications in Heavy
Metals Removal and Catalytic Processes. Sep. Purif. Technol. 2020. Vol. 231. P. 115901.
https://doi.org/10.1016/j.seppur.2019.115901.
19. Huggett J.M. Reference Module in Earth Systems and Environmental Sciences / Minerals: Glauconites and Green
Clays. Elsevier. 2013. https://doi.org/10.1016/B978-0-12-409548-9.02893-1.
20. Hassan M.S., Baioumy H.M. Structural and chemical alteration of glauconite under progressive acid treatment.
Clay. Clay Miner. 2006. Vol. 54(4). P. 491–499. https://doi.org/10.1346/ccmn.2006.0540410.
21. Nieto F., Abad I., Bauluz B., Reolid M. Textural and genetic relationships between glauconite and celadonite
at the nanoscale: two different structural-compositional fields. Minerals. 2021. Vol. 33. P. 503–517.
https://doi.org/10.5194/ejm-33-503-2021.
22. Yatsyshyn M., Saldan I., Milanese C. et al. Properties of Glauconite/Polyaniline Composite Prepared in Aqueous
Solution of Citric Acid. J. Polym. Environ. 2016. Vol. 24. P. 196–205. https://doi.org/10.1007/s10924-016-0763-x.
23. Yatsyshyn M., Makogon V., Reshetnyak O. et al. Properties of the hybrid glauconite/polyaniline composites
synthesized in the aqueous citrate acid solutions. Chem. Chem. Technol. 2016. No. 4. P. 429435. (in Ukrainian).
24. Yatsyshyn M.M., Makogon V.M., Reshetnyak O.V., Błażejowski J. Chapter 14. Structure and Thermal Stability of
Silica–Glauconite. Polyaniline Composite in Computational and Experi-mental Analysis of Functional Materials.
Oleksandr V. Reshetnyak, Gennady E. Zaikov (Eds.) [Series: AAP Research Notes on Polymer Engineering Science and
Technology]. Toronto, New Jersey: Apple Academic Press, CRC Press (Taylor & Francis Group), 2017. P. 497520.
25. Makogon V., Nesterivs’ka S., German N., Yatsyshyn М. Synthesis of composites glauconite/polyaniline doped
phosphatic acid and their properties. Visn. Lviv Univ. Ser. Chem. 2019. Iss. 60(2). P. 363–373. (in Ukrainian).
https://doi.org/10.30970/vch.6002.363.
26. Nesterivska S., Makogon V., Yatsyshyn M. et al. Properties of the composites made of glauconite and
polyaniline in aqueous solutions of phosphoric acid. Chem. Chem. Technol. 2020. Vol. 14(4). P. 487–495.
https://doi.org/10.23939/chcht14.04.487.
27. Sydorko M., Nesterivs’ka S., Yatsyshyn М. et al. Removal of Cr(VI) by polyaniline and
glauconite/polyanilinesulfatic acid composite. Visn. Lviv Univ. Ser. Chem. 2023. Iss. 64. P. 290304.
https://doi.org/10.30970/vch.6401.290.
28. El Guerraf A., Zian I., Jadi S.B. et al. Smart conducting polymer innovations for sustainable and safe food
packaging technologies. Compr. Rev. Food. Sci. Food Saf. 2024. Vol. 23(6). P. e70045.
https://doi.org/10.1111/1541-4337.70045.
29. Babel V., Hiran B.L. A review on polyaniline composites: Synthesis, characterization, and applications. Polym.
Composite. 2021. Vol. 42(7). P. 3142–3157. https://doi.org/10.1002/pc.26048.
30. Ashour E.A., Tony M.A. Eco-friendly removal of hexavalent chromium from aqueous solution using natural clay
mineral: activation and modification effects. SN Appl. Sci. 2020. Vol. 2(12). P. 2042.
https://doi.org/10.1007/s42452-020-03873-x.
31. Sydorko M., Yatsyshyn M., Zelinskiy A. et al. Cr(VI) adsorbent based on zeolite and polyaniline. Proc.
Shevchenko Sci. Soc. Chem. Sci. 2023. Vol. 73. P. 114–135. https://doi.org/10.37827/ntsh.chem.2023.73.114.
32. Sydorko M., Yatsyshyn M., Zelinskiy A. et al. Comparison of adsorption properties in relation to Cr(VI)
polyaniline and zeolithe/polyaniline composite.Visn. Lviv Univ. Ser. Chem. 2024. Iss. 65. P. 244–263.
https://doi.org/10.30970/vch.6501.244.
33. Sydorko M., Stetsiv Yu., Yatsyshyn M. et al. Adsorption removal of Cr(VI) oxyanions by kaoline/polyaniline
composite from aqueous solutions. Visn. Lviv Univ. Ser. Chem. 2025. Iss. 66. P. 258278.
https://doi.org/10.30970/vch.6601.268.
34. Zlati M.L., Georgescu L.P., Iticescu C. et al. New approach to modelling the impact of heavy metals onthe
European Union’s water resources. Int. J. Environ. Res. Public Health. 2022. Vol. 20. P. 45.
https://doi.org/10.3390/ijerph20010045.
35. Sydorko M., Palka S., Yatsyshyn M. et al. Study of adsorption of CrО42 and Cr2О72 by polyaniline from
aqueous solutions. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. 75. P. 100–116.
https://doi.org/10.37827/ntsh.chem.2024.75.100.
36. Farooqi Z. H., Akram M. W., Begum R. at al. Inorganic nanoparticles for reduction of hexavalent chromium. J.
Hazard. Mater. 2020. Vol. 402. P. 123535. https://doi.org/10.1016/j.jhazmat.2020.123535.
37. Lin J., Tang Q., Wu J., Sun H. Synthesis, characterization and properties of polyaniline/expanded vermiculite
intercalated nanocomposite. Sci. Technol. Adv. Mater. 2008. Vol. 9. P. 025010 (6pp).
https://doi.org/10.1088/1468-6996/9/2/025010.
38. Chen Z., Wei B. Yang S. et al. Synthesis of PANI/AlOOH composite for Cr(VI) adsorption and reduction from
aqueous solutions. Chem. Select. 2019. Vol. 4(8). P. 2352–2362. https://doi.org/10.1002/slct.201803898.
39. Wang J., Zhang K., Zhao L. Sono-assisted synthesis of nanostructured polyaniline for adsorption of aqueous
Cr(VI): Effect of protonic acids. Chem. Eng. J. 2014. Vol. 239. P. 123–131.
https://doi.org/10.1016/j.cej.2013.11.006.
40. Assem H.D., Donkor M.E.K., Tamakloe R. Y., Nkum R.K. A Review of UV-Vis on Polymers; Polyaniline (PANI) and
Its Nanocomposites. Eur. J. Appl. Sci. 2024. Vol. 12(2). P. 322346. https://doi.org/10.14738/aivp.122.16797.
41. Boudjelida S., Li X., Djellali S. et al. Synthesis and Characterization of Polyaniline Emeraldine Salt
(PANI-ES) Colloids Using Potato Starch as a Stabilizer to Enhance the Physicochemical Properties and
Processability. Materials. 2024. Vol. 17. P. 2941. https://doi.org/10.3390/17122941.
42. Zhou T., Li C., Jin H. et al. Effective Adsorption/Reduction of Cr(VI) Oxyanion by Halloysite@Polyaniline
Hybrid Nanotubes. ACS Appl. Mater. Interfaces. 2017. Vol. 9(7) P. 6030–6043.
https://doi.org/10.1021/acsami.6b14079.