PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXXVIII 2025

Оlena АKSIMENTYEVA, Nataliia ZHURINA, Yuliia MARKIV, Yaroslav KOVALSKYI

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine
е-mail: nataliia.zhurina@lnu.edu.ua

DOI:

PARTICULARITY OF FORMATION AND SENSORY PROPERTIES OF COPOLIMERS OF ANILINE AND ANISIDINE ON OPTICALLY TRANSPARENT SURFACES

The development of modern industry and the strengthening of requirements for environmental monitoring cause an urgent need for the creation of new generations of highly sensitive, selective, and stable chemical sensors. The detection of various gaseous environments is an important task for the safety and survival of living organisms, especially in conditions of military operations and in contaminated areas. In this regard, optical gas sensors based on conjugated polymer systems are quite effective, as they can promptly signal the presence of toxic substances in "field conditions" and do not require complex equipment or high-energy consumption. Thin films of polyaniline, poly(o-anisidine), and their copolymers were formed by the in situ oxidative polymerization method on the surface of tin (IV) oxide at various monomer ratios in the reaction mixture. Quantum-chemical calculations for o-anisidine and its oligomers (up to the tetramer inclusive) were performed using the semi-empirical PM7 method in the MOPAC2016 program. The initial geometry of the molecules was set using ChemSketch, and the Winmostar V11 graphical interface was used to control the calculations and for visualization. It was established that during the polymerization of o-anisidine, with an increase in the length of the oligomer chain, there is a regular decrease in the ionization potential and a narrowing of the energy gap (the difference in energies of the highest occupied and lowest unoccupied molecular orbitals), which causes the process to auto-accelerate. The kinetic curves of the polymerization of aniline, o-anisidine, and their copolymers (at aniline to anisidine ratios of 1:1 and 3:1 in the reaction mixture) were obtained by monitoring the change in the optical density of the reaction mixture over time at λ = 750 nm. In the study of the kinetics of (co)polymerization, significant differences in the reactivity of the monomers were revealed, as well as an increase in the induction period and a slowdown in the process rate with an increase in the o-anisidine content in the monomer mixture. The gas-sensitive properties of the obtained films were tested with respect to the action of ammonia. It was shown that the sensory response of the materials to the action of ammonia is caused by the reversible deprotonation of the polymer chain, which is accompanied by significant changes in the optical absorption spectra. It was found that the copolymer film with an aniline to o-anisidine ratio of 3:1 demonstrates the highest sensitivity (261%).

Keywords: poly(o-anisidine), polyaniline, copolymers, ammonia, optical spectra.

References:

    1. To C. K., Ben-Jaber S., Parkin I.P. Developments in the Field of Explosive Trace Detection. ACS Nano. 2020. Vol. 14(9). P. 10804–10833. (https://10.1021/acsnano.0c01579).
    2. National Center for Biotechnology Information. [Electronic resource]. URL: https://pubchem.ncbi.nlm.nih.gov/compound/Diethylenetriamine#section=Health-Hazards (Access date 16.01.2025). 3. Ricci P.P., Gregory O.J. Free standing thin‑film sensors for the trace detection of explosives. Sci. Rep. 2021. Vol. 11. P. 6623. https://doi.org/10.1038/s41598-021-86077-6. 4. Tsizh B. R., Aksimentyeva O. I. Ways to improve the parameters of optical gas sensors of ammonia based on polyaniline. Sens. Act. A Phys. 2020. Vol. 315. P. 112273. https://doi.org/10.1016/j.sna.2020.112273. 5. Panda S., Mehlawat S., Dhariwal N., Kumar A., Sanger A. Comprehensive review on gas sensors: Unveiling recent developments and addressing challenges. Mater. Sci. Eng. B. 2024. Vol. 308. P. 117616. https://doi.org/10.1038/s41598-021-86077-6. 6. Aksimentyeva O. I., Tsizh B. R., Horbenko Y. Y., Konopelnyk O. I., Martynyuk G. V., Chokhan’ M. I. Flexible elements of gas sensors based on conjugated polyaminoarenes. Mol. Cryst. Liq. Cryst. 2018. Vol. 670(1). P. 3–10. https://doi.org/10.1080/15421406.2018.1542057. 7. Borkar A. D., Heda P. B., Umare S. S. Oxidative copolymers of aniline with o-anisidine: Their structure and ion exchange properties. Mater. Res. Innov. 2011. Vol. 15(2). P. 135–139. https://doi.org/10.1179/143307511X12998222918994. 8. Neetika M., Rajni J., Singh P. K., Bhattacharya B., Singh V., Tomar S.K. Synthesis and properties of polyaniline, poly(o -anisidine), and poly[aniline-co-(o -anisidine)] using potassium iodate oxidizing agent. High Perform. Polym. 2017. Vol. 29(3). P. 266–271. https://doi.org/10.1177/0954008316639366. 9. Ozyilmaz A.T. Synthesis of Poly (Aniline-Co-O-Anisidine) Film in Electrolyte Mixture and Its Anticorrosion Behavior. Nat. Eng. Sci. 2021. Vol. 6(3). P. 197–207. https://doi.org/10.28978/nesciences.1036850. 10. Hu C., Li Y., Zhang N., Ding Y. Synthesis and characterization of a poly(o-anisidine)-SiC composite and its application for corrosion protection of steel. RSC Adv. 2017. Vol. 7(19). P. 11732–11742. https://doi.org/10.1039/c6ra27343b. 11. Yang X., Wang G., Wang R., Li X. A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor. Electrochim. Acta. 2010. Vol. 55(19). P. 5414–5419. https://doi.org/10.1016/j.electacta.2010.04.067. 12. Sivakumar K., Kumar V.S., Shim J.-J., Haldorai Y. Photocatalytic and Antimicrobial Activities of Poly(aniline-co-o-anisidine)/Zinc Oxide Nanocomposite. Asian J. Chem. 2014. Vol. 26(2). P. 600–606. https://doi.org/10.14233/ajchem.2014.16274. 13. Kenane A. et al. Synthesis and characterization of conducting aniline and o-anisidine nanocomposites based on montmorillonite modified clay. Appl. Clay Sci. 2020. Vol. 184. P. 105395. https://doi.org/10.1016/j.clay.2019.105395. 14. Khamngoen K., Paradee N., Sirivat A. Chemical oxidation polymerization and characterization of poly ortho-anisidine nanoparticles. J. Polym. Res. 2016. Vol. 23(9). P. 181. https://doi.org/10.1007/s10965-016-1073-7. 15. Horbenko Yu. Yu., Dzeryn M. R., Tsizh B. R., Aksimentieva O. I. Method for obtaining sensitive elements of sensors based on polyaminoarenes. Patent of Ukraine No. 123712. Publ. 12.03.2018. (in Ukrainian). 16. Jin Z., Su Y., Duan Y. An improved optical pH sensor based on polyaniline. Sens. Act. B. 2000. Vol. 71. P. 118–122. https://doi.org/10.1016/S0925-4005(00)00597-9. 17. Kumar A., Choudhary N. Synthesis, Characterization, and Applications of SnO2 Nanoparticles: A Comprehensive Review. JJTU J. Renew. Energy Exchange. 2022. Vol. 10(10). P. 65–75. 18. Tan W., Li X., Li X. Theoretical screening of SnO2-based single-atom catalysts for CO oxidation reaction. Reac Kinet Mech Cat. 2025. https://doi.org/10.1007/s11144-025-02830-23.25. 19. Aksimentyeva O.I., Tsizh B.R., Horbenko Yu.Yu., Stepura A.L. Detection of the organic solvent vapors by the optical gas sensors based on polyaminoarenes. Sci. Messin. LNU Vet. Med. Biotech. 2021. Vol. 23(95). P. 20–24. https://doi.org/10.32718/nvlvet-f9504. 20. Ahmad M. N. et al. Improving the Thermal Behavior and Flame-Retardant Properties of Poly(o-anisidine)/MMT Nanocomposites Incorporated with Poly(o-anisidine) and Clay Nanofiller. Molecules. 2022. Vol. 27(17). P. 5477. https://doi.org/10.3390/molecules27175477. 21. Aksimentyeva O., Konopelnyk O., Horbenko Yu., Starykov H. Poly(o-anisidine) - Graphene Oxide Nanocomposites. Proceeding of 12th International Conference “Nanomaterials: Applications & Properties” (NAP-2022), Kraków, Poland, Sept. 11–16, 2022. P. 01–04. https://doi.org/10.1109/NAP55339.2022.9934745. 22. Sapurina I., Shishov M. Oxidative polymerization of aniline: Polyaniline molecular synthesis and the formation of supramolecular structures. New polymers for special applications / Edited by A.S. Gomes. INTECH. 2012. 23. Maistrenko L. A., Andreeva О. А. Infrared spectroscopic studies of new generation polymer compounds. Bulletin of KhNTU. 2011. Vol. 4(43). P. 143–147. 24. Aksimentyeva O., Martyniuk G., Tsizh B., Kovalskyi Y., Yatskov M. Formation of flexible elements of optical sensors based on composites of polyaminoarenes and polyvinyl alcohol. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021. Vol. LXVI. P. 7–18. (in Ukrainian) 25. Baizer M. M., Lund H. Organic electrochemistry. Marcel Dekker Inc., 1983. Vol.2. P. 679–684. 26. Massines D., Funt L. Poly-o-methoxyaniline: a new soluble conducting polymer. Synth. Met. 1988. Vol. 25(3). P.235–243. http://doi.org/10.1016/0379-6779(88)90248-2. 27. Laha S., Luthy R. G. Oxidation of aniline and other primary aromatic amines by manganese dioxide Environ. Sci. Technol. 1990. Vol. 24(3). P. 363–373. https://doi.org/10.1021/es00073a012. 28. Koval’chuk E.P., Stratan N.V., Reshetnyak O.V., Błażejowski J., Whittingham M.S. Synthesis and properties of the polyanisidines. Solid State Ionics. 2001. Vol. 142(4). P. 217–224. https://doi.org/10.1016/S0167-2738(01)00748-2. 29. Santos-Ceballos J. C., Salehnia F., Güell F., Romero A., Vilanova X., Llobet E. Room-Temperature Ammonia Sensing Using Polyaniline-Coated Laser-Induced Graphene. Sensors. 2024. Vol. 24(23). P. 7832. https://doi.org/10.3390/s24237832. 30. Mikulionok I.O. Technological fundamentals of polymer materials processing. 2nd ed., revised and enlarged. Kyiv: Igor Sikorsky KPI, 2020. 292 p. (in Ukrainian). 31. Vilenskyi V.O. Polymers: synthesis, modification, research: a textbook. Zhytomyr: I. Franko Zhytomyr State University Publishing House, 2024. 348 p. (in Ukrainian). 32. Aksimentyeva O., Dutka V., Horbenko Yu., Martyniuk H., Rii U., Zastavska H. Composites of electroconductive polyaminoarenes in the matrix of styromal. Proc. Shevchenko Sci. Soc. Chem. Sci. 2017. Vol. XLVIII. P. 7–16. http://nbuv.gov.ua/UJRN/pntsh_him_2017_48_3. 33. Vispute K., Mukke A., More A. Poly(o‐anisidine), its composites, derivatives and applications: A review. Polym. Adv. Technol. 2023. Vol. 35(1). https://doi.org/10.1002/pat.6218. 34. Butoi B., Groza A., Dinca P., Balan A., Barna V. Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine) Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration. Polymers (Basel). 2017. Vol. 9(12). P. 732. https://doi.org/10.3390/polym9120732. 35. Kuestan A. I. Synthesis and characterization of polyaniline and poly(aniline-co-o-nitroaniline) using vibrational spectroscopy. Arab. J. Chem. 2017. Vol. 10. P. S2668–S2674. https://doi.org/10.1016/j.arabjc.2013.10.010. 36. Tsizh B. R., Aksimentyeva O. I., Olkhova M. R., Horbenko Yu. Yu. Sensory properties of polyaniline films, obtained on the optically transparent carriers. Sci. Messin. LNU Vet. Med. Biotech. 2016. Vol. 18(2). P. 121–125. https://doi.org/10.15421/nvlvet201668. 37. Pandey S. Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review. J. Sci.: Adv. Mater. Devices. 2016. Vol. 1. P. 431–453. https://doi.org/10.1016/j.jsamd.2016.10.005. 38. Aksimentyeva O., Tsizh B., Holyaka R. Modern trends in the design of sensitive layers for optical sensors of toxic substances. Proc. Shevchenko Sci. Soc. Chem. Sci. 2024. Vol. 75. P. 144–151. https://doi.org/10.37827/ntsh.chem.2024.75.144. 39. Dong R., Yang M., Zuo Y., Lian L., Xing H., Duan X., Chen S. Conducting Polymers-Based Gas Sensors: Principles, Materials, and Applications. Sensors. 2025. Vol. 25(9). P. 2724. https://doi.org/10.3390/s25092724. 40. Tsizh B., Aksimentyeva O., Holyaka R., Chokhan M. Gas sensors for analysis of food products: a monograph. Lviv. SPOLOM, 2021. 236 p. (in Ukrainian). 41. Ricci P.P., Gregory O.J. Free standing thin-film sensors for the trace detection of explosives. Sci. Rep. 2021. Vol. 11. P. 6623. https://doi.org/10.1038/s41598-021-86077-6.