Volodymyr BABIZHETSKYY, Olha ZHAK, Stanislav STOYKO
Ivan Franko National University of Lviv, Kyryla i Mefodia Str., 6, 79005 Lviv, Ukraine e-mail: volodymyr.babizhetskyy@lnu.edu.ua
DOI:
PHASE EQUILIBRIA AND CRYSTAL STRUCTURE OF THE COMPOUNDS IN Y–Ni–As SYSTEM AT 970 K
Phase equilibria and the crystal structure of the compounds of the ternary system Y–Ni–As were studied using X-ray phase and structural analyses, and the phase diagram was constructed at 970 K in the range of 0–0.67 mol. % As. Samples for investigation were prepared by sintering of the pressed pellets of the mixtures of the pure components in evacuated silica tubes at 970 K for 240 h, and then were arc-melted under purified argon atmosphere. The as-cast samples were again sealed in a silica tubes, and then heat treated at 970 K during 1500 h. Annealed alloys were quenched in cold water without breaking the ampoules. The X-ray powder diffraction data were collected on a powder diffractometers DRON-3M (CuKα-radiation), and Image Plate Huber G 670 (CuK1- radiation). All calculations were performed using WinCSD and FullProf software. The existence of six ternary compounds was confirmed: YNi4As2 (ZrFe4Si2 type), Y2Ni12As7 (Zr2Fe12P7 type), Y6Ni20.04As12.78 (Y6Ni20.04As12.78 type), Y6Ni15As10 (Tb6Ni15As10 type), Y20Ni42As31 (Sm20Ni42P31 type), and YNiAs (LiBaSi type). Moreover, the crystal structures of two ternary arsenides were refined for the first time using the X-ray powder diffraction data: Y2Ni12As7, Zr2Fe12P7 type structure, space group P-6, lattice parameters a = 9.3582(2) Å, c = 3.8149(1) Å, final residual values are RB = 0.078, RP = 0.084; and Y6Ni15As10, Tb6Ni15As10 type structure, space group P63/m, a = 17.0101(1) Å, c = 3.88759(4) Å, RB = 0.053, RP = 0.106. For the last arsenide, the splitting of the positions of arsenic atoms As1 and As2 on the 63-axis is observed, and, as a result, neighboring nickel atoms also occupy split positions. For split positions Ni2/Ni3/Ni4, the total occupancy is about 100%. As a consequence, it has been confirmed that the refined composition of this arsenide coincides with the previously known formula Y6Ni15As10. The crystal structures of ternary arsenides Y2Ni12As7 and Y6Ni15As10 belong to a homologous series of flat bilayer hexagonal structures with a metal:metalloid ratio of 2:1, whose composition is described by the formula Lnn(n-1)M(n+1) (n+2)Xn(n+1)+1.
Keywords: rare earth metal arsenides, isothermal section, crystal structure, X-ray powder diffraction method.
References:
-
1. Babizhetskyy V., Le Sénéchal C., Bauer J., Députier S., Guérin R. Interaction of lanthanum or cerium with
nickel and arsenic: phase diagrams and structural chemistry. J. Alloys Compd. 1999. Vol. 287. P. 174–180.
(https://doi.org/10.1016/S0925-8388(99)00039-0).
2. Babizhetskyy V. S., Guerin R., Simon A. Interaction of samarium with nickel and arsenic: phase diagram and
structural chemistry. Z. Naturforsch. B. 2006. Vol. 61(6). P. 733–740. https://doi.org/10.1515/znb-2006-0613.
3. Mozharivkyj Yu. А., Kuzma Yu. B. System Ho–Ni–As. Inorg. Mater. 1998. Vol. 34(23). P. 326–328 (in russian).
4. Zelinska M., Zhak O., Oryshchyn S., Polianska T., Pivan J.-Y. Solid state phase equilibria in the Er–Ni–P and
Er–Ni–As systems at 800 °C. Z. Naturforsch. B. 2007. Vol. 62. P. 1143–1152. https://doi.org/10.1515/znb-2007-0907.
5. Jeitschko W., Jaberg B. Lanthanoid nickel arsenides with the Zr2Fe12P7 structure. J. Less-Common Met. 1981.
Vol. 79. P. 311–314. https://doi.org/10.1016/0022-5088(81)90080-1.
6. Babizhetskyy V. S., Le Senechal C., Guerin R., Isnard O., Hiebl K. Ternary rare-earth nickel arsenides of
Sm20Ni42P31-type structure: Structural chemistry and physical properties. Phys. Rev. B. 2002. Vol. 66. 014102. P.
1–11. https://doi.org/10.1103/PhysRevB.66.014102.
7. Babizhetskyy V. S., Guerin R., Isnard O., Hiebl K. Ternary rare-earth nickel arsenides R3Ni7As5 (R= La, Ce, Pr,
Nd, Sm) with a new variant of the BaAl4-type: crystal structure and physical properties. J. Solid State Chem.
2003. Vol. 172(2). P. 265–276. https://doi.org/10.1016/S0022-4596(03)00084-7.
8. Babizhetskyy V. S., Hiebl K., Simon A. A new ternary arsenide Eu20Ni42As31: preparation, crystal structure and
physical properties. J. Alloys Compd. 2009. Vol. 486(1–2). P. 42–45.
https://doi.org/10.1016/j.jallcom.2009.07.039.
9. Babizhetskyy V., Hiebl K., Simon A. Structural chemistry and physical properties of ternary compounds
R6Ni15As10, R= Y, Sm, Gd, Tb, Dy. J. Alloys Compd. 2006. Vol. 413. P. 17-25.
https://doi.org/10.1016/j.jallcom.2005.06.072
10. Jeitschko W., Terbuchte L. J., Rodewald U. C. Preparation and Crystal Structure of the Ternary Lanthanoid
Nickel Arsenides Ln13Ni25As19 (Ln= Tm, Yb, and Lu). Z. Anorg. Allg. Chem. 2001. Vol. 627. P. 2095–2099.
https://doi.org/10.1002/1521-3749(200109)627:9<2095::AID-ZAAC2095>3.0.CO;2-B.
11. Madar R., Chaudouet P., Dhahri E., Senateur J. P., Fruchart R., Lambert B. Mise en evidence d'une nouvelle
serie de pnictures ternaires de formule generale Ln6Ni20X13 (X= P, As). J. Solid State Chem. 1985. Vol. 56. P.
335–342. https://doi.org/10.1016/0022-4596(85)90183-5.
12. Pivan J. Y., Guerin R., El Ghadraoui E. H., Rafiq M. Tetrahedral Ni4 clusters in a marcasite-type host
structure: The preparation and crystal structure of MNi4X2 compounds (X= P, As; M= Zr, Hf, Y, Gd, Tb, Dy, Ho,
Er, Tm, Yb, Lu). J. Less-Common Met. 1989. Vol. 153. P. 285–292. https://doi.org/10.1016/0022-5088(89)90123-9.
13. El Ghadraoui E. H., Pivan J.Y., Guerin R., Sergent M. New ternary pnictides Ln2NiX2 (X= P, As) with a filled
TiP-type structure. Mater. Res. Bull. 1988. Vol. 23. P. 891–898. https://doi.org/10.1016/0025-5408(88)90083-9.
14. Babizhetskyy V. S., Guerin R., Simon A. A New Ternary Arsenide LaNi5As3: Preparation and Crystal Structure.
Z. Naturforsch. B. 2004. Vol. 59(10). P. 1103–1108. https://doi.org/10.1515/znb-2004-1004.
15. Probst H. B., Mewis A. Ternäre Nickelphosphide und -arsenide mit einem Metall: Nichtmetall-Verhaltnis von
2:1. Z. Anorg. Allg. Chem. 1991. Vol. 597. P. 173–182. https://doi.org/10.1002/zaac.19915970120.
16. Ghadraoui E. H., Pivan J. Y., Guerin R., Pena O., Padiou J., Sergent M. Polymorphism and physical properties
of LnNi2As2 compounds (Ln= La-Gd). Mater. Res. Bull. 1988. Vol. 23. P. 1345–1354.
https://doi.org/10.1016/0025-5408(88)90123-7.
17. Babizhetskyy V., Stoyko S., Zhak O. Crystal structure of the ternary arsenide Y6Ni20.04As12.78. Visn. Lviv.
Univ., Ser. Khim. 2020. Vol. 61. P. 71–79. https://dx.doi.org/10.30970/vch.6101.071.
18. Akselrud L., Grin Yu. WinCSD: Software package for crystallographic calculations (Version 4). J. Appl.
Cryst. 2014. Vol. 47. P. 803–805. https://doi.org/10.1107/S1600576714001058.
19. Rodriguez-Carvajal J. Recent developments of the program FULLPROF. Commission on Powder Diffraction.
Newsletter. 2001. Vol. 26. P. 12–19.
20. Nash P. Ni–Y Phase Diagram. In : Binary Alloy Phase Diagrams, 2nd ed. [Ed. Massalski T.B.]. Materials Park,
OH : ASM International, 1990. Vol. 3. P. 2884–2885.
21. Babizhetskyy V., Myakush O., Levytskyi V., Kotur B., Duppel V., Kienle L. On the binary phases ~YNi4 and
Y2Ni7. Chem. Met. Alloys. 2018. Vol. 11(3/4). P. 92–99. https://doi.org/10.30970/cma11.0375.
22. Singleton M., Nash P. Ni–As Phase Diagram. In : Binary Alloy Phase Diagrams, 2nd ed. [Ed. Massalski T.B.].
Materials Park, OH : ASM International, 1990. Vol. 1. P. 299–302.
23. Villars P., Cenzual K. (Eds.). Pearson’s Crystal Data – Crystal Structure Database for Inorganic Compounds.
Materials Park: ASM International (OH), Release 2023/24.
24. Holleman A.F. In: E. Wiberg, N. Wiberg (Eds.), Lehrbuch der anorganischen Chemie, De Gruyter, Berlin-New
York, 1995. P. 1838–1840.
25. Kuz’ma Yu., Chykhrij S. Phosphides. In: K.A.Gschneidner, Jr., L.R. Eyring (Eds.), Handbook on the Physics
and Chemistry of Rare Earths, Elsevier Science B. V., Amsterdam, 1996. Vol. 23. P. 285–434.
https://doi.org/10.1016/S0168-1273(96)23007-7.