PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXXVIII 2025

Rostyslav KOSTIUK1, Yuriy HORAK2, Mykola OBUSHAK2, Iryna SOBECHKO1

1 Lviv Polytechnic National University, St. George's Square 3/4, 79013 Lviv, Ukraine
e-mail: rostyslav.r.kostiuk@lpnu.ua

2Ivan Franko National University of Lviv, Kyryla i Mefodiya St., 6, 79005 Lviv, Ukraine

DOI:

THERMODYNAMIC PARAMETERS OF SOLUBILITY OF 1-R-2-METHYL-5-PHENYL-PYRROLE-3-CARBOXYLIC ACIDS IN ACETONITRILE

The 1-R-2-methyl-5-phenyl-pyrrole-3-carboxylic acids were synthesised by the Paal-Knorr reaction. The enthalpy and entropy of dissolution of acids in acetonitrile were calculated from the experimentally determined temperature dependence of solubility. Taking into consideration the enthalpy and entropy of melting reduced to 298.15 K, the enthalpies and entropies of mixing of the studied pyrrole acids with acetonitrile were calculated. The nature of the interaction between the solvent and the dissolved substances was determined.

Keywords: polysubstituted pyrroles; Paal-Knorr reaction; pyrrole-3-carboxylic acids; enthalpy of dissolution; enthalpy of mixing; enthalpy of melting; acetonitrile.

References:

    1. Gholap S.S. Pyrrole: an emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem. 2016. Vol.110. P. 13–31. (https://doi.org/10.1016/j.ejmech.2015.12.017).
    2. Ali I., Lone M.N., Al-Othman Z.A., Al-Warthan A., Sanagi M.M. Heterocyclic scaffolds: centrality in anticancer drug development. Curr. Drug Targets. 2015. Vol. 16. P. 711–734. https://doi.org/10.2174/1389450116666150309115922. 3. Ali I., Lone M.N., Al-Othman Z.A., Al-Warthan A. Insights into the pharmacology of new heterocycles embedded with oxopyrrolidine rings: DNA binding, molecular docking, and anticancer studies. J. Mol. Liq. 2017. Vol. 234. P. 391–402. https://doi.org/10.1016/j.molliq.2017.03.112. 4. Ahmad S., Alam O., Naim M.J., Shaquiquzzaman M., Alam M.M., Iqbal M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem. 2018. Vol. 157. P. 527–561. https://doi.org/10.1016/j.ejmech.2018.08.002. 5. Jones R.A. Pyrroles: the Synthesis and the Physical and Chemical Aspects of the Pyrrole Ring. Wiley-Interscience, 1990. 6. Domagala A., Jarosz T., Lapkowski M. Living on pyrrolic foundations – Advances in natural and artificial bioactive pyrrole derivatives. Eur. J. Med. Chem. 2015. Vol. 100. P. 1760–1787. https://doi.org/10.1016/j.ejmech.2015.06.009. 7. Wilkerson W.W., Copeland R.A., Covington M., Trzaskos J.M. Antiinflammatory 4,5-diarylpyrroles. 2. Activity as a function of cyclooxygenase-2 inhibition. J. Med. Chem. 1995. Vol. 38. P. 3895–3901. https://doi.org/10.1021/jm00020a002. 8. Du C. The solubility of ethyl candesartan in mono solvents and investigation of intermolecular interactions. Liquids. 2022. Vol. 2(4). P. 404–412. https://doi.org/10.3390/liquids2040023. 9. Reichardt C., Welton T. Solvents and Solvent Effects in Organic Chemistry. 4th Ed. Wiley-VCH, 2011. https://doi.org/10.1002/9783527632220. 10. Wypych G. Handbook of Solvents. 2nd Ed. ChemTec Publishing, 2014. 11. Marcus Y. The Properties of Solvents. Wiley, 1998. 12. Li Z., Guo J., Hu B., Zhou C., Zheng Y., Zhao H., Li Q. Solubility measurement, modeling, and solvent effect of M-hydroxyacetophenone in ten pure and binary mixed solvents from T = (289.15–325.15) K. J. Mol. Liq. 2022. Vol. 353. Art. 118798. https://doi.org/10.1016/j.molliq.2022.118798. 13. Maharana A., Sarkar D. Solubility measurements and thermodynamic modeling of pyrazinamide in five different solvent-antisolvent mixtures. Fluid Phase Equilib. 2019. Vol. 497. P. 33–54. https://doi.org/10.1016/j.fluid.2019.06.004. 14. Huang W., Wang H., Li C., Wen T., Xu J., Ouyang J., Zhang C. Measurement and correlation of solubility, Hansen solubility parameters and thermodynamic behavior of clozapine in eleven mono-solvents. J. Mol. Liq. 2021. Vol. 333. Art. 115894. https://doi.org/10.1016/j.molliq.2021.115894. 15. Wu Y., Zhang X., Di Y., Zhang Y. Solubility determination and modelling of 4-Nitro-1,2-phenylenediamine in eleven organic solvents from T = (283.15 to 318.15) K and thermodynamic properties of solutions. J. Chem. Thermodyn. 2017. Vol. 106. P. 22–35. https://doi.org/10.1016/j.jct.2016.11.014. 16. Li X., Wang M., Du C., Cong Y., Zhao H. Thermodynamic functions for solubility of 3-nitro-O-toluic acid in nine organic solvents from T = (283.15 to 318.15) K and apparent thermodynamic properties of solutions. J. Chem. Thermodyn. 2017. Vol. 110. P. 87–98. https://doi.org/10.1016/j.jct.2017.02.017. 17. Ridka O., Matiychuk V., Sobechko I., Tyshchenko N., Novyk M., Sergeev V., Goshko L. Thermodynamic properties of methyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylate in Organic Solutions. Fr.-Ukr. J. Chem. 2019. Vol. 7(2). P. 1–8. https://doi.org/10.17721/fujcV7I2P1-8. 18. Shevchenko D.S., Horak Y.I., Tischenko N.I., Pyshna D.B., Sobechko I.B. Thermodynamic properties of 3-(1,5-diphenylpyrrol-2-yl)-propanoic acid. Chem. Tech. App. Subst. 2024. Vol. 7(1). P. 8–14. https://doi.org/10.23939/ctas2024.01.008. 19. Shevchenko D. S., Horak Y.І., Tischenko N.I., Pyshna D.B., Obushak M.D., Sobechko I.B. Thermodynamic parameters of the solubility of 3-(1,5-diphenylpyrrol-2-yl)propanoic acid in Organic Solvents. Voprosy Khimii i Khimicheskoi Tekhnologii. 2025. No. 2. P. 24–32. https://doi.org/10.32434/0321-4095-2025-159-2-24-32. 20. Shevchenko D., Horak Y., Tyschenko N., Kichura D., Obushak M.; Sobechko I. Synthesis and thermodynamic parameters of phase transitions of 3-(1-R-5-phenyl-1H-pyrrol-2-yl)propanoic acid derivatives. Chemistry & Chemical Technology 2024. Vol. 19(1).