Yuliia STETSIV1, Viktoriia SHINGELSKA1, Mykhaylo YATSYSHYN1, Аnatoliy ZELINSKIY1, Halyna STETSIV2, Oleksandr RESHETNYAK1
1Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: yuliia.stetsiv@lnu.edu.ua
2Lviv State College of Food and Processing Industry of the National University of Food Technologies Pulyuya str., 42, 79060 Lviv, Ukraine
DOI: https://doi.org/10.37827/ntsh.chem.2023.73.095
POLYANILINE NANOFILM ON POLYETHYLENE TEREPHTHALATE SUBSTRATE AS A Cr(VI) ADSORBENT
This work deals with the use of a polyaniline (PAn) film deposited in situ on a flexible polyethylene terephthalate (PET) substrate-matrix as an adsorbent for the adsorption and reduction of toxic Cr(VI) to less toxic Cr(III). Adsorption of Cr(VI) from aqueous solutions was studied on a polyaniline film obtained on a PET matrix substrate, washed several times with distilled water after synthesis and dried at room temperature. Research on Cr(VI) adsorption was carried out from solutions of different concentrations, namely: 10; 20; 30; 40 and 50 mg/l. The change in Cr(VI) content was followed by electronic spectra using a UV-Vis spectrophotometer. It is shown that practically 80–85% of Cr(VI) is adsorbed by polyaniline films both doped with citric acid during the synthesis and additionally doped with citric acid. It was established that polyaniline is oxidized to pernigraniline during the reduction of Cr(VI) to Cr(III). Equilibrium sorption of Cr(VI) by PAn films was studied using two-parameter levels of isotherms: Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. The obtained results confirm that the sorption of Cr(VI) on the polyaniline film is best described by the Langmuir isotherm, as evidenced by the highest value of the coefficient of determination (R2=0.9988). The maximum sorption capacity, estimated by the Langmuir isotherm, is ~55 mg/g. It was found that Cr(VI) adsorption corresponds to the pseudo-second-order model, as well as the Elovovich model, which indicates the chemical nature of Cr(VI) adsorption by the polyaniline film. Desorption and regeneration experiments of polyaniline films on a PET matrix substrate were performed and reused for three consecutive cycles. Adsorption studies revealed that polyaniline films on the surface of chemically resistant PET films can be effective adsorbents of Cr(VI) from aqueous solutions of low concentrations of Cr(VI). According to the research result s, easy-to-prepare, ecological and effective adsorbents based on polyaniline films on flexible film substrates made of polyethylene terephthalate can be proposed for the removal of Cr(VI) from aqueous solutions.
Keywords: polyaniline, polyethyleneterephthalate, citric acid, chromium, adsorption.
References:
-
1. Xia S., Song Z., Jeyakumar P. et al. A critical review on bioremediation technologies for Cr(VI)-contaminated
soils and wastewater. Crit. Rev. Environ. Sci. Technol. 2019. Vol. 49(12). P. 1027–1078. (https://doi.org/10.1080/10643389.2018.1564526).
2. Zhitkovich A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011. Vol.
24. P. 1617–1625. (https://doi.org/10.1021/tx200251t).
3. Gorny J., Billon G., Noiriel C. et al. Chromium behavior in aquatic environments: a review. Environ. Rev. 2016.
Vol. 24(4). P. 503–516. (https://doi.org/10.1139/er-2016-0012).
4. Qasem N.A.A., Ramy H.M., Lawal D.U. Removal of heavy metal ions from wastewater: a comprehensive and critical
review. npj Clean Water. 2021. Vol. 4(36). P. 1–15.
(https://doi.org/10.1038/s41545-021-00127-0).
5. Aigbe U.O., Osibote A. A review of hexavalent chromium removal from aqueous solutions by sorption technique
using nanomaterials. J. Environ. Chem. Eng. 2020. Vol. 8(6). P. 104503.
(https://doi.org/10.1016/j.jece.2020.104503).
6. Kan С.-C., Ibe A.H., Rivera K.K.P. et al. Hexavalent chromium removal from aqueous solution by adsorbents
synthesized from groundwater treatment residuals. Sustainable Environ. Res. 2017. Vol. 4. P. 163–171.
(https://doi.org/10.1016/j.serj.2017.04.001).
7. Fu F., Wang Q. Removal of heavy metal ins from wastewaters: A review. J. Environ. Manage. 2011. Vol. 92(3). P.
407–418. (https://doi.org/10.1016/j.jenvman.2010.11.011).
8. Fenti A., Chianese S., Iovino P. et al. Cr(VI) Sorption from Aqueous Solution: A Review. Appl. Sci. 2020. Vol.
10(18). P. 6477–6498. (https://doi.org/10.3390/app10186477).
9. В автомобілях хочуть заборонити хромовані деталі: у чому причина. х-News Авто-мото. Нд, 23 липня 2023.
(https://newsyou.info/2023/07/v-avtomobilyax-xochut-zaboroniti-xromovani-detali-u-chomu-prichina).
10. Qiu B., Xu C., Sun D. et al. Polyaniline Coating with Various Substrates for Hexavalent Chromium Removal.
Appl. Surf. Sci. 2014. Vol. 334. P. 7–11.
(http:/doi.org/10.1016/j.apsusc.2014.07.039).
11. Eskandari E., Kosari M., Farahani D.A. et al. A Review on Polyaniline-Based Materials Applications in Heavy
Metals Removal and Catalytic Processes. Sep. Purif. Technol. 2020. Vol. 231. P. 115901.
(https://doi.org/10.1016/j.seppur.2019.115901).
12. Bhaumik M., Gupta V.K., Maity A. Synergetic Enhancement of CrVI Removal from Aqueous Solutions Using
Polyaniline@Ni(OH)2 Nanocomposites Adsorbent. J. Environ. Chem. Eng. 2018. Vol. 6(2). P. 2514‒2527.
(https://doi.org/10.1016/j.jece.2018.03.047).
13. Taghizadeh A., Taghizadeh M., Jouyandeh M. et al. Conductive polymers in water treatment: A review. J. Mol.
Liq. 2020. Vol. 312. P. 113447.
(https://doi.org/10.1016/j.molliq.2020.113447).
14. Xiao L.M., Guang T.F., Shao H.X. Synthesis of Polyaniline Coating on the Modifed Fiber Ball and Application
for Cr(VI) Removal. Nanoscale. Res. Lett. 2021. Vol. 16(58). P. 1‒12.
(https://doi.org/10.1186/s11671-021-03509-y).
15. Li Z., Gong L. Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and
Conversion. Mater. 2020. Vol. 13(3) P. 548.
(https://doi.org/10.3390/ma13030548).
16. Yang D., Wang J., Yishan Cao Y. et al. Polyaniline-Based Biological and Chemical Sensors: Sensing Mechanism,
Configuration Design, and Perspective. ACS Appl. Electron. Mater. 2023. Vol. 5(2). P. 593‒611.
(https://doi.org/10.1021/acsaelm.2c01405).
17. Diarisso A., Fall M., Raouafi N. Elaboration of a chemical sensor based on polyaniline and sulfanilic acid
diazonium salt for highly sensitive detection nitrite ions in acidified aqueous media. Environ. Sci.: Water Res.
Technol. 2018. Vol. 4. P. 1024–1034.
(https://doi.org/10.1039/C8EW00139A).
18. Kazemi F., Naghib S.M., Zare Y., Rhee K.Y. Biosensing Applications of Polyaniline (PANI)-Based Nanocomposites:
A Review. Polymer Rev. 2020. Vol. 61(3). P. 1–45.
(https://doi.org/10.1080/15583724.2020.1858871).
19. Shabani-Nooshabadi M, Zahedi F. Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite
film for high-performance supercapacitor applications. Electrochim. Acta. 2017. Vol. 245. P. 575–586.
(https://doi.org/10.1016/j.electacta.2017.05.152).
20. Gojgić J., Petrović M., Jugović B. et al. Electrochemical and Electrical Performances of High Energy Storage
Polyaniline Electrode with Supercapattery Behavior. Polymers. 2022. Vol. 14(24). Р. 5365.
(https://doi.org/10.3390/polym14245365).
21. Ekande O.S., Kumar M. Review on polyaniline as reductive photocatalyst for the construction of the visible
light active heterojunction for the generation of reactive oxygen species. J. Environ. Chem. Eng. 2021. Vol. 9. P.
105725. (https://doi.org/10.1016/j.jece.2021.105725).
22. Rezazadeh N., Kianvash A., Zhao C., Koh A. A study on microwave absorption properties of polyaniline/nitrile
rubber/graphene/Fe3O4 composites with a thickness of 0.7 mm and high flexibility. J. Appl. Polym. Sci. 2023. Vol.
140(24). P. 53946. (https://doi.org/10.1002/app.53946).
23. Reshetnyak О.V., Yatsyshyn М.M. Chapter 8. Corrosion Protection of Aluminum and Al-BasedAlloys by Polyaniline
and Its Composites. Computational and Experimental Analysis of Functional Materials / Oleksandr V. Reshetnyak,
Gennady E. Zaikov (Eds.) [Series: AAP Research Notes on Polymer Engineering Science and Technology]. Toronto, New
Jersey: Apple Academic Press, CRC Press (Taylor & Francis Group). 2017. P. 287–329.
(https://doi.org/10.1201/9781315366357-8).
24. Samani M.R., Toghraie D. Removal of hexavalent chromium from water using polyaniline/wood sawdust/ poly
ethylene glycol composite: an experimental study J. Environ. Health. Sci. Eng. 2019. Vol. 17(1). P. 53–62.
(https://doi.org/10.1007/s40201-018-00325-y).
25. Matthews V. Packaging Materials: 1. Polyethylene Terephthalate (PET) for Food Packaging Applications. The
International Life Sciences Institute (ILSI). Report Series Editor: Dr. Kevin Yates. 1997. P. 1–18.
26. Sinha V, Patel M.R., Patel J.V. Pet waste management by chemical recycling: a review. J. Polym. Environ. 2010.
Vol. 18(1). P. 8–25.
(https://doi.org/10.1007/s10924-008-0106-7).
27. Hnizdiukh Yu.A., Yatsyshyn M.M., Reshetnyak O.V. Chapter 12. Surface Modification of Polymeric Materials by
Polyaniline and Application of Polyaniline/Polymeric Composites // Computational and Experimental Analysis of
Functional Materials / O.V. Reshetnyak, G.E. Zaikov (Eds.) – Toronto, New Jersey: Apple Academic Press, CRC Press
(Taylor & Francis Group). 2017. P. 423–472.
(https://doi.org/10.1201/9781315366357-12).
28. Kutanis S., Karakışla M., Akbulut U. et al. The conductive polyaniline/poly(ethylene terephthalate) composite
fabrics. Composites, Part A. 2007. Vol. 38(2). P. 609–614.
(https://doi.org/10.1016/j.compositesa.2006.02.008).
29. Liu C.-D., Wu S.-Y., Han J.-L. et al. Patterned Conductive Polyaniline Films Fabricated Using Lithography and
In Situ Polymerization. J. Appl. Polym. Sci. 2010. Vol. 115(4). P. 2271–2276.
(https://doi.org/10.1002/app.31349).
30. Duboriz I., Pud A. Polyaniline/poly(ethylene terephthalate) film as a new optical sensing material. Sensor.
Actuat. B-Chem. 2014. Vol. 190. P. 398–407.
(https://doi.org/10.1016/j.snb.2013.09.005).
31. Mu S., Xie H., Wang W., Yu D. Electroless silver plating on PET fabric initiated by in-situ reduction of
polyaniline. Appl. Surf. Sci. 2015. Vol. 353. P. 608–614.
(https://doi.org/10.1016/j.apsusc.2015.06.126).
32. Stetsiv Y.A., Yatsyshyn М.M., Nykypanchuk D. et al. Characterization of polyaniline thin films prepared on
polyethyleneterephthalate substrate. Pol. Bull. 2021. Vol. 78 P. 6251–6265.
(https://doi.org/10.1007/s00289-020-03426-7).
33. Stetsiv Yu. Demko Ch., Yatsyshyn M., Pandyak N. The kinetics of deposition of polyaniline on polyethylene and
polyethylene terephthalate substrates-matrices. Proc. Shevchenko Sci. Soc. Chem. Sci. 2016. Vol. XLIV. P. 37–49.
(In Ukraine).
34. Stetsiv Yu., Halushchak I., Yatsyshyn M., Serkiz R. Properties of polyaniline films deposited in situ of
cellulose acetate substrate. Visnyk Lviv University. Series Chemistry. 2016. Vol. 57(2). P. 418–431. (In Ukraine).
35. Stetsiv Yu., Zhuravets’ka І., Yatsyshyn M. et al. Thin polyaniline films on a polyethylene terephthalate
substrate as Cr(VI) adsorbents. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021. Т. LXVI. P. 19‒33. (In Ukraine).
(https://doi.org/10.37827/ntsh.chem.2021.66.019).
36. Dehghani M.H., Taher M.M., Bajpai A.K. et al. Removal of noxious Cr (VI) ions using single-walled carbon
nanotubes and multi-walled carbon nanotubes. Chem. Eng. J. 2015. Vol. 279. P. 344–352.
(https://doi.org/10.1016/j.cej.2015.04.151).
37. Weber W.J., Morris J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div-ASCE. 1963. Vol.
89(2). P. 31–60.
(https://doi.org/10.1061/JSEDAI.0000430).
38. Kumar R., Ansari M.O., Alshahrie A. et al. Adsorption modeling and mechanistic insight of hazardous chromium
on para toluene sulfonic acid immobilized-polyaniline@CNTs nanocomposites. J. Saudi Chem. Soc. 2019. Vol. 23(2).
P. 188–197.
(https://doi.org/10.1016/j.jscs.2018.06.005).
39. Hsini A., Naciri Y., Benafqir M. et al. Facile synthesis and characterization of a novel 1,2,4,5-benzene
tetracarboxylic acid doped polyaniline@zinc phosphate nanocomposite for highly efficient removal of hazardous
hexavalent chromium ions from water. J. Colloid Interf. Sci. 2021. Vol. 585. P. 560–573.
(https://doi.org/10.1016/j.jcis.2020.10.036).
40. Bharat Ch., Debajyoti P. Isotherms, kinetics and thermodynamics of hexavalent chromium removal using biochar.
J. Environ. Chem. Eng. 2018. Vol. 6(2). P. 2335–2343.
(https://doi.org/10.1016/j.jece.2018.03.028).
41. Chang X., Li M., Liu Q. et al. Adsorption–reduction of chromium(VI) from aqueous solution by phenol–
formaldehyde resin microspheres. RSC Adv. 2016. Vol. 69(52). P. 46879–46888.
(https://doi.org/10.1039/C6RA07239A).
42. Barakat M.A., Al-Ansari A.M., Kumar R. Synthesis and characterization of Fe-Al binary oxyhydroxides/MWCNTs
nanocomposite for the removal of Cr(VI) from aqueous solution. J. Taiwan Inst. Chem. Eng. 2016. Vol. 63. P.
301–311. (https://doi.org/10.1016/j.jtice.2016.03.019).
43. Kohila N., Subramaniam P. Removal of Cr(VI) using polyaniline based Sn(IV), Ce(IV) and Bi(III) iodomolybdate
hybrid ion exchangers: Mechanistic and comparative study. J. Environ. Chem. Eng. 2020. Vol. 8(5). P. 104376.
(https://doi.org/10.1016/j.jece.2020.104376).
44. Valizadeh K., Bateni A., Sojoodi N. et al. Magnetized inulin by Fe3O4 as a bio-nano adsorbent for treating
water contaminated with methyl orange and crystal violet dyes. Sci. Rep-UK. 2022. Vol. 12. P. 22034.
(https://doi.org/10.1038/s41598-022-26652-7).
45. Marsal A., Maldonado F., Cuadros S. et al. Adsorption isotherm, thermodynamic and kinetics studies of
polyphenols onto tannery shavings. Chem. Eng. J. 2012. Vol. 183. P. 21–29.
(https://doi.org/10.1016/j.cej.2011.12.012).
46. Soldatkina L.M. Equilibrium and thermodynamic studies of anthocyanin adsorption on fibrous cation exchanger
FIBAN K-1. Chemistry, physics and technology of surface. 2023. Vol. 14. P. 67–75.
(https://doi.org/10.15407/hftp14.01.067).
How to Cite
STETSIV Yu., SHINGELSKA V., YATSYSHYN M., ZELINSKIY A., STETSIV H., RESHETNYAK O. POLYANILINE NANOFILM ON POLYETHYLENE TEREPHTHALATE SUBSTRATE AS A Cr(VI) ADSORBENT Proc. Shevchenko Sci. Soc. Chem. Sci. 2023. Vol. LXXIII. P. 95-113.