Galyna MARTYNIUK1, Olena AKSIMENTYEVA-KRASNOPOLSKA2
1Rivne State Humanities University, Plastova st., 31в, 33000 Rivne, Ukraine e-mail: galmart@ukr.net
2Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: aksimen@ukr.net
DOI: https://doi.org/10.37827/ntsh.chem.2023.73.086
ELECTRICAL PROPERTIES OF COMPOSITES BASED ON DIELECTRIC AND CONDUCTING POLYMERS
Electrically conductive conjugated polyaminoarenes based on polyaniline and its derivatives, possessing their own electronic conductivity, and act as electrically conductive fillers in composites with dielectric polymer matrices. Using the 2-contact method of measuring specific resistance, the electrical properties of polymer-polymer composites based on dielectric polymer matrices of various types, both water-soluble (PVA, PMAА, PAА) and hydrophobic (PMMA, PBMA, ED-20), were investigated. Conjugated polyaminoarenes – polyorthotoluidine (PoT), polyorthoanisidine (PoA), and polyaniline (PANі), were used as electrically conductive polymer fillers. To describe the concentration dependence of the electrical conductivity of polymer-polymer composites, the Kirkpatrick model (scaling law) was used, which allows describing the percolation properties of conductor-dielectric composites. It was established that the curves of the dependence of the specific electrical conductivity of the composites on the volume content of the polymer filler in all cases are characterized by a percolation dependence with percolation threshold values at the level of 2–10 vol. %. With such a small content of conjugated polymer, the conductivity increases by 6–10 orders of magnitude for all investigated composites. It can be assumed that at the maximum content of the conductive filler in the composite, proper contact between particles is ensured, while the conductive filler forms its own polymer network (conductivity cluster), inside the «host» polymer, which permeates the entire volume of the material and a continuous conductive phase is formed, which is uniformly is distributed throughout the volume of the polymer composite. For the first time, the critical parameters of the conductivity of polymer composites with an electrically conductive polymer filler before and after the percolation threshold «s» and «t» were determined. It was established that the value of the percolation threshold and critical parameters of conductivity depends on many factors, primarily on the type of dielectric matrix and the structure of the filler, the presence and type of the substituent of the benzene nucleus in the polyaminoarene molecule.
Keywords: polymer composite, conductive polymer, dielectric matrix, percolation threshold, critical parameters.
References:
-
1. Aksimentyeva О.I., Konopelnyk O.I., Martyniuk G.V. Chapter 9. Synthesis and Physical- Chemical Properties of
Composites of Conjugated Polyaminearenes with Dielectric Polymeric Matrixes / eds.: O.V. Reshetnyak, G.E. Zaikov.
Computational and Experimental Analysis of Functional Materials. Toronto: Apple Academic Press, 2017. P. 331−370.
(https://doi.org/10.1201/9781315366357-9).
2. Нeeger A.J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth. Metals.
2002. Vol. 123. P.23−42. (https://doi.org/10.1016/S0379-6779(01)00509-4).
3. Aksimentуeva O.I. Electrochemical methods of synthesis and conductivity of conjugated polymers. Lviv.: Svit.
1998. 153 p. (in Ukrainian).
4. Aksimentyeva O., Konopelnyk O., Opaynych I., Tzish B., Ukrainets A., Ulansky Y., Martyniuk G. Interaction of
components and conductivity in polyaniline-polymethylmethacrylate nanocomposites. Rev. Adv. Mater. Sci. 2010. Vol.
23(2). P.30–34.
5. Aksimentyeva O., Dutka V. Gorbenko Yu., Martynyuk G. and others. Composites of conductive polyaminoarenes in
styrofoam matrices. Proc. Shevchenko Sci. Soc. Chem. Sci. 2017. Vol. XLVIII. Р. 7–16. (in Ukrainian).
(http://nbuv.gov.ua/UJRN/pntsh_him_2017_48_3).
6. Yevchuk O., Aksimentyeva O., Horbenko Yu. Optical and electrical properties of composites of conjugated
polyaminoarenes with polymer electrolytes. Visnyk Lviv Univ. Ser. Chem. 2012. Vol. 53P. 352–356 (in Ukrainian).
7. Herega А. Some Applications of the Percolation Theory: Brief Review of the Century Beginning. J. Mater. Sci.
Eng. A. 2015. Vol. 5(11–12). Р. 409−414. (https://doi.org/10.17265/2161-6213/2015.11-12.004).
8. Mamunya Ye.P, Yurzhenko M.V., Lebedyev Ye.V, Levchenko V.V., Chervakov O.V., Matkovska O.K., Sverdlikovska O.S.
Electroactive polymeric materials. K: Alfa Reklama, 2013. 402 p. (in Ukrainian).
9. Tarasevich Yu.Yu. Percolation: theory, practice, algorithms. Tutorial. M.: URSS, 2002, 112 p.
10. Hu N., Masuda Z., Yan C., Yamamoto G., Fukunaga H., Hashida T. The electrical properties of polymer
nanocomposites with carbon nanotube fillers. Nanotechnology. 2008. Vol. 19(21).
(https://doi.org/10.1088/0957-4484/19/21/215701).
11. Snarskii A.A. Did Maxwell know about the percolation threshold? (on the fiftieth anniversary оf percolation
theory). Phys. Usp. 2007. Vol. 50(12). Р. 1239–1242.
(https://doi.org/10.1070/PU2007v050n12ABEH006348).
12. Xue Q. The influence of particle shape and size on electric conductivity of metal-polymer composites. Eur.
Polym. J. 2004. Vol. 40(2). Р. 323–327. (https://doi.org/10.1016/j.eurpolymj.2003.10.011).
13. Taherian R. Development of an Equation to Model Electrical Conductivity of Polymer-Based Carbon
Nanocomposites. ECS Journal of Solid State Science and Technology. 2014. Vol. 3(6). P. M26−M38.
(https://doi.org/10.1149/2.023406jss).
14. Lysenkov E.A., Yakovlev Yu.V., Klepko V.V. Influence of polymer matrix features on the percolation behavior of
systems based on polyethers and carbon nanotubes. Phys. Chem. Solid State. 2014. Vol. 15(1). Р. 372−379. (in Ukrainian).
(http://hdl.handle.net/123456789/10315).
15. Kirkpatrick S. Classical Transport in Disordered Media: Scaling and Effective-Medium Theories. Phys. Rev.
Lett. 1971, Vol. 27(25). Р. 1722–1725.
(https://doi.org/10.1103/PhysRevLett.27.1722).
16. Shklovsky B.I., Efros A.D. Theory of percolation and conductivity of strongly inhomogeneous media. Successes
Fiz. Nauk. 1975. Vol. 117(3). Р.401–435.
(https://doi.org/10.3367/UFNr.0117.197511a.0401).
17. Martyniuk G., Aksimentyeva O., Yatskov M., Gakalo O. Synthesis kinetic features and electrical properties of
composites based on conjugated polyaminoarenes and polyacrylic or polymethacrylic acids. Problems of chemistry and
sustainable development. 2021. Vol. 3. Р. 30−38 (in Ukrainian).
(https://doi.org/10.32782/pcsd-2021-3-5).
18. Aksimentyeva O.І., Martyniuk G.V. Percolation phenomena in the polymer composites with conducting polymer
fillers. Phys. Chem. Solid State. 2021. Vоl. 22(4). Р. 811−816.
(https://doi.org/10.15330/pcss.22.4.811-816).
19. Martyniuk G.V. Aksimentyeva О.І. Features of charge transport in polymer composites
polymethylmethacrylate–polyaniline. Phys. Chem. Solid State. 2020. Vol. 21(2). Р. 319– 324.
(https://doi.org/10.15330/pcss.21.2.319-324).
20. Christensen К. Percolation theory. L:MIT Press, 2002. 40 р.
21. Aksimentyeva O.I., Konopelynyk O.I., Ukrainets A.M. etc. Conductivity anisotropy and percolation phenomena in
film composites of conjugated polyaminoarenes with polyvinyl alcohol. Phys. Chem. Solid State. 2004. Vol. 5(1). Р.
142–146.
22. Ukrainets A.M., Melnyk H.M., Yevchuk O.M., Aksimentyeva O.I. Physico-mechanical properties of poly(butyl
methacrylate) and polyaniline composites. Scientific notes of Ternopil National Pedagogical University named after
V. Hnatyuk. Chemistry Series, 2009. Vol. 15. Р. 64−67. (in Ukrainian).
23. Martyniuk G., Aksimentyeva O. Study of electrical conductivity and thermal deformation properties of polybutyl
methacrylate-polyaniline composites. Problems of Chemistry and Sustainable Development 2023. Vol. 1. Р. 16−27 (in
Ukrainian).
24. Aksimentyeva O.I., Hrytsiv M.Ya., Konopelynyk O.I. Temperature dependence of conductivity and structure of
amine-containing polyarylenes. J. Phys. Res. 2002. Vol. 6(2). P. 180−184.
(https://doi.org/10.30970/jps.06.180).
25. Inokuty H., Akamatu H. Electroconductivity of organic semiconductors. Trans. with English M.: Izd. foreign
lit. 1963. 205 p.
26. Galina V.M. Physico-chemical properties of composites of conjugated polyaminoarenes with dielectric polymer
matrices: Diss. Ph.D. chemical science: 02.00.04. Lviv. 2008. 139 p.
27. Martyniuk G. Influence of dielectric polymer matrix on properties of composites with electrically conductive
polymeric filler. East European Scientific Journal Wschodnioeuropejskie Czasopismo Naukowe. 2015. Vol. 3. Р. 73–77
(in Ukrainian).
28. Yurkiv V, Aksimentyeva O, Ukrainets A., Martynіuk G., Opaynych I. Electrical properties of composites of
polymethyl methacrylate and polyaniline. Visnyk Lviv Univ. Ser. Chem. 2006. Vol. 47. P. 352–356. (in Ukrainian).
29. Мullen S., Stevens D.R., Roberts W.A., Ojha S.S., Clarke L.I., Gorgа R.E. Morphological, electrical and
mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes. Macromolecules.
2007. Vol. 40(4). Р. 997−1003.
(https://doi.org/10.1021/ma061735c).
30. Ziadan K.М., Hussein H.F., Ajeel K.I. Study of the electrical characteristics of poly(o-toluidine) and
application in solar сеll. Energy Procediaю 2012.Vol. 18. P. 157–164.
(https://doi.org/10.1016/j.egypro.2012.05.027).
31. Berezkin V.I., Popov V.V. Percolation transition in carbon composite on the basis of fullerenes and exfoliated
graphite. Phys. Solid State. 2018. Vol. 60. Р. 207−211.
(https://doi.org/10.1134/S1063783418010043).
How to Cite
MARTYNIUK G., AKSIMENTYEVA-KRASNOPOLSKA O. ELECTRICAL PROPERTIES OF COMPOSITES BASED ON DIELECTRIC AND CONDUCTING POLYMERS. Proc. Shevchenko Sci. Soc. Chem. Sci. 2023. Vol. LXXIII. P. 86-94.