Orysia BEREZNIUK, Oleksandr SMITIUKH, Ludmyla PISKACH
Lesya Ukrainka Volyn National University, Voli Ave. 13, 43025 Lutsk, Ukraine e-mail: smitiukh.oleksandr@vnu.edu.ua
DOI: https://doi.org/10.37827/ntsh.chem.2023.73.045
THE Cu2S–Sb2S3–SnS2 SYSTEM
The samples of appropriate compositions were synthesized from high-purity elements in evacuated quartz containers. Phase composition of obtained alloys was investigated by XRD, DTA, and microstructure analysis. Powder diffraction patterns were recorded at a DRON 4-13 X-ray diffractometer (2Θ step 0.05°, 2Θ range 10–90°). Phase analysis realized in WinCSD software package. Differential thermal analysis was performed at a set-up consisting of a Progret Thermodent-03 furnace and a thermocouple signal amplification unit (Pt/Pt-Rh thermocouple). The microstructure of specific samples was investigated using a Leica VMHT Auto microhardness tester, top amplification ×3811. Seven vertical sections were studied. The formation of the ternary compound Sb2SnS5 was confirmed at the Sb2S3–SnS2 section that melts incongruently at 756 K (L + γ ↔ Sb2SnS5). The coordinates of the eutectic process are 737 K and 65 mol. % Sb2S3. Three vertical sections of this system, Cu3SbS3–Cu2SnS3, CuSbS2–Cu2SnS3, Sb2S3–Cu2SnS3, are quasi-binary of the eutectic type with the coordinates 20, ~7, 12 mol. % Cu2SnS3 at 866, 796, 765 K, respectively. The sections Cu3SbS3 – Cu4SnS4, Sb2S3 – Cu2Sn4S9, and Sb2SnS5 – Cu2Sn4S9 are quasi-binary only in the sub-solidus region. The compounds Cu2S, Sb2S3, SnS2, Cu3SbS3, Cu4SnS4, Cu2SnS3, Cu2Sn4S9 form limited solid solution ranges α, β, γ, δ, ε, ζ, η, respectively. The Cu3SbS3 compound has a polymorphous transformation at 633 K (HТМ-Cu3SbS3 (δ') ↔ LТМ-Cu3SbS3 (δ)). An isothermal section at 500 K was plotted featuring extensive solid solution ranges of Cu3SbS3 (>10 mol. %) and Cu2SnS3 (~7–8 mol. %). The binary and ternary compounds of the bounding sections form fifteen two-phase equilibria which divide the concentration triangle into seven three-phase fields, α – δ – ε, δ – ε – ζ, CuSbS2 – δ – ζ, β – CuSbS2 – ζ, β – ζ – η, β – η – Sb2SnS5, Sb2SnS5 – η – γ. The unit cell parameter of the Cu3SbS3 solid solution decreases at the Cu3SbS3–Cu2SnS3 section (а=10.4209(8)–10.389(1) Å), and those of the Cu2SnS3 solid solution slightly increase (а=5.433(4)–5.445(1) Å, c=10.86(2)–10.91(6) Å). The liquidus surface projection the quasi-ternary system Cu2S – Sb2S3 – SnS2 onto the concentration triangle is described by twenty-one monovariant curves, five binary and nine ternary invariant processes of which three are peritectic (U1–U3) and six are eutectic (E1–E6). Each compound has a field of primary crystallization, the largest of which belongs to Cu2SnS3. It is involved in two invariant processes at the bounding side Cu2S – SnS2, and three binary and six ternary processes within the system.
Keywords: quasi-binary system, eutectic, peritectic, solid solutions.
References:
-
1. Madelung O., Rössler U., Schulz M. Copper sulfides (Cu2S, Cu(2-x)S) crystal structure, lattice parameters.
Landolt-Börnstein – Group III Condensed Matter. Vol. 41C. P. 1–5. (https://doi.org/10.1007/10681727_70).
2. Riabtsev S.V., Zavrazhnov A.Yu., Berezyn S.S., Rodyvylov S.V., Turyshchev S.Yu., Doma-shevskaia E.P. Obtaining
and characherisation of film samples of Cu2S. Journal medium condensation and interphase boundaries. 2016. T. 18
(4).P. 545–549 (in Russian).
3. Nieroda P., Leszczyński J., Mikuła A., Mars K., Kruszewski M., Koleżyński A. Thermoelectric properties of Cu2S
obtained by high temperature synthesis and sintered by IHP method. Ceram. Int. 2020. Vol. 46(16). P. 25460–25466.
(https://doi.org/10.1016/j.ceramint.2020.07.016).
4. Tesfaye F., Taskinen P. Thermodynamics and Phase Equilibria in the (Ni, Cu, Zn)–(As, Sb, Bi)–S Systems at
Elevated Temperatures (300–900°C). Aalto University Publications in Materials Science and Engineering. 2010. P. 3.
(https://doi.org/10.13140/2.1.4901.2803).
5. Srikanth S., Suriyanarayanan N., Prabahar S., Balasubramanian V., Kathirvel D. Structural and Optical
Properties of Chemical bath Deposited Sb2S3 thin films. Adv. Appl. Sci. Res. 2011. Vol. 2(1). P. 95–104.
6. Lan C., Liang G., Lan H., Peng H., Su Z., Zhang D., Fan P. Microstructural and optical properties of Sb2S3 film
thermally evaporated from antimony pentasulfide and efficient planar solar cells. Phys. Status Solidi RRL. 2018.
Vol. 12(6). P. 1800025. (https://doi.org/10.1002/pssr.201800025).
7. Bletskan D.I. Phase equilibrium in binary Systems AIVBVI: Part. III Systems Sn–Chalcogenides. ChemInform. 2006.
Vol. 37(30). P. 61–69. (https://doi.org/10.1002/chin.200630244).
8. Shi C., Yang P., Yao M., Dai X., Chen Z. Preparation of SnS2 thin films by close-spaced sublimation at
different source temperatures. Thin Solid Films. 2013. Vol. 534. P. 28–31.
(https://doi.org/10.1016/j.tsf.2013.01.072).
9. Babanlyi N.B. Fhase equalibria and thermodynamic properties of the Cu–Ge(Sb)–S system. Abstract of
dissertation. Baku, 1991. 23 pp. (in Russian).
10. Babanly M.B., Yusibov Y.A., Abishev V.T. Ternary Chalcogenides Based on Copper and Silver. Baku: BSU
Publisher, 1993. 341 pp.
11. Go-Eun Lee, Il-Ho Kim. Skinnerite Cu3SbS3: Solid-State Synthesis and Thermoelectric Properties. Korean J. Met.
Mater. 2022. Vol. 60(6). P. 455–462.(https://doi.org/10.3365/KJMM.2022.60.6.455).
12. Baoli Du, Ruizhi Zhang, Ming Liu, Kan Chen, Hangfeng Zhangc, Michael J. Reece. Crystal structure and improved
thermoelectric performance of iron stabilized cubic Cu3SbS3 compound. J. Mat. Chem. C. 2019. Vol. 7. P. 394–404.
(https://doi.org/10.1039/C8TC05301D).
13. Rabhi A., Kanzari M., Rezig B. Optical and structural properties of CuSbS2 thin films grown by thermal
evaporation method. Thin Solid Films. 2009. Vol. 517(7). P. 2477–2480. (https://doi.org/10.1016/j.tsf.2008.11.021).
14. Olekseyuk İ.D., Dudchak I.V., Piskach L.V. Phase equilibria in the Cu2S–ZnS–SnS2 system. J. Alloys Comp. 2004.
Vol. 368. P. 135–143. (https://doi.org/10.1016/j.jallcom.2003.08.084).
15. Zotova T.V., Karagodin Yu. The Investigation of character of phase equalibria in the Cu – Ge(Sn) – S
quasi-ternarysystem. Bulletin of scientific papers of microelectronics. M: МIEТ. 1976. P.174–181 (in Russian).
16. Khanafer M., Rivet J., Flahaut J. Ềtude du systeme Cu2S–GeS2. Surstructure du compose Cu2GeS3. Transition de
phases du compose Cu8GeS6. Bull. de la Soc. Chim. de Franc. 1973. Vol. 3. P. 859–862.
17. Chen X., Sato A., Wada H., Nozakin M.M. Synthesis, Electrical conductivity and Crystal Stucture of Cu4Sn7S16
and Stucture refinement of Cu2SnS3. J. Sol. State Chem. 1998. Vol. 139. P. 144–151.
(https://doi.org/10.1006/jssc.1998.7822).
18. Ahluwalia G.K. Applications of Chalcogenides: S, Se, and Te. Schwitzerland: Springer, 2017. 474 pp.
(https://doi.org/10.1007/978-3-319-41190-3).
19. Fiechter S., Martinez M., Schmidt G. et al. Phase relations and optical properties of semiconducting ternary
sulfides in the system Cu–Sn–S. J. Phys. Chem. Solids. 2003. Vol. 64. Р. 1859–1862.
(https://doi.org/10.1016/S00223697(03)00172-0).
20. Guan H., Shen H., Gao C., He X. Structural and optical properties of Cu2SnS3 and Cu4SnS4 thin films by
successine ionic layer adsorption and reaction. J. Mater. Sci. Mater. Electr. 2013. Vol. 24. P. 1490–1494.
(https://doi.org/10.1007/s10854-012-0960-x).
21. Rustamov P.G. Phase diagram of the SnS2–Sb2S3 system. Dokl. Akad. Nauk SSSR. 1987. Vol. 43(1). P. 42.
22. Mamedov Sh.G. The phase equalibria of the Cu2SnS3–Sb2S3 system. Bull. Tomsk Univ. Ser. Khim. 2020. Vol. 18. P.
18–26 (in Russian). (https://doi.org/10.17223/24135542/18/2).
23. Chakrabarti D.J., Laughlin D.E. The Cu–S (Copper–Sulfur) system. Bull. Alloy Phase Diagr. 1983. Vol. 4. P. 254–271.
(https://doi.org/10.1007/BF02868665).
24. Bayliss P., Nowacki W. Refinement of the crystal structure of stibnite, Sb2S3. Z. Kristallogr. 1972. Vol.
135(3–4). P. 308–315. (https://doi.org/10.1524/ZKRI.1972.135.3-4.308).
25. Arora S.K., Patel D.H., Agarwal M.K. Microtopographical Characterization of Vapour-grown SnS2 Single Crystals.
Cryst. Res. Techn. 1993. Vol. 28(5). P. 623–627. (https://doi.org/10.1002/crat.2170280509).
26. Guenter J.R., Oswald H.R. Neue polytype Form von Zinn(IV)-sulfid. J. App. Crystall. 1989. Vol. 22. P. 622–623.
27. Ilyasheva N.A. Diagramma sostoyaniya sistemyi Cu2S–Sb2S3. Neorg. mater. 1973. Vol. 9(10). P. 1677–1679. (in
Russian).
28. Olekseyuk I.D., Dudchak I.V., Piskach L.V. Phase equilibria in the Cu2S–ZnS–SnS2 system. J. Alloys Compd.
2004. Vol. 368. P. 135–143. (https://doi.org/10.1016/j.jallcom.2003.08.084).
29. Pfitzner A. Disorder of Cu+ in Cu3SbS3: structural investigations of the high- and low-temperature
modification. Z. Kristallogr. 1998. Vol. 213. P. 228–236.
(https://doi.org/10.1524/zkri.1998.213.4.228).
30. Hofmann W. Strukturelle und morphologische Zusammenhaenge bei Erzen vom Formeltyp ABC2. Z. Kristallogr. 1933.
Vol. 84(1). P. 177–203. (https://doi.org/10.1524/zkri.1933.84.1.177).
31. Alias M.F.A., Naji I.S., Taher B.Y., Al-Douri A.A.J. Synthesis Cu2SnS3 and Cu3SnS4 nanopowder and studing the
composition, structural and morphological properties. J. Non-oxide Glass. 2016. Vol. 8(4). P. 93–97.
32. Jaulmes S., Rivet J., Laruelle P. Cuivre–étain–soufre Cu4SnS4. Acta Cryst. 1977. Vol. B33. P. 540–542.
(https://doi.org/10.1107/S0567740877004002).
33. Mamedov Sh.G. The phase equalibria of the Cu2SnS3–Cu3SbS3 system. Bull. Tomsk’ Univ. Ser. Khim. 2019. Vol. 15.
P. 26–35 (in Russian).
34. Berezniuk O.P., Olekseiuk I.D., Mazurets I.I. The phase equalibria of the Сu2S–SnS2–As2S3 (Sb2S3) systems at
500 K. «Lvivski khimichni chytannia» – 2019: The Issue of scientific works, Lviv, 2019. P. 210 (in Ukrainian).
35. Berezniuk O.P., Alrikik M., Kohut Yu.M., Piskach L.V. The phase equalibria of the Cu(Ag)2S–SnS2–Sb2S3 systems.
Problems Chem. Sustainable Dev. 2022. Vol. 4. P. 17–30 (in Ukrainian). (https://doi.org/10.32782/pcsd-2022-4-2).
36. Berezniuk O.P., Alrikik M., Piskach L.V. Psysico-chemical properties of AI3CVX3 in the AI2S–CV2S3–BIVS2, de
AI=Cu, Ag; CV=As, Sb; BIV=Ge, Sn system. «Khimichni Karazinski chytannia – 2023». Kharkiv, 2023. P. 18–19 (in Ukrainian).
How to Cite
BEREZNIUK O., SMITIUKH O., PISKACH L. THE Cu2S–Sb2S3–SnS2 SYSTEM. Proc. Shevchenko Sci. Soc. Chem. Sci. 2023. Vol. LXXIII. P. 45-58.