PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXXIII 2023

Myroslava HORIACHA1,2, Galyna NYCHYPORUK1, Yaroslav GALADZHUN3, Rainer PÖTTGEN2, Vasyl ZAREMBA1

1Inorganic Chemistry Department, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine
e-mail: myroslava.horyacha@lnu.edu.ua

2Institut für Anorganische Chemie, Universität Münster, Corrensstraße 30, D-48149, Germany

3Department of Life Safety, Ivan Franko National University of Lviv, Doroshenka Str., 41, 7900 Lviv, Ukraine

DOI: https://doi.org/10.37827/ntsh.chem.2023.73.038

CRYSTAL STRUCTURE OF PHASES FROM GdNiIn1-xAlx SOLID SOLUTION

The two phases within a continuous solid solution between the GdNiIn and GdNiAl compounds were synthesized and their crystal structures were determined on the basis of X-ray single crystal data: GdNiAl (ZrNiAl type, P-62m, a = 0.70200(5), c = 0.39148(1) nm, R1 = 0.0091, wR2 = 0.0202) and GdNiIn0.48(1)Al0.52(1) (ZrNiAl type, P-62m, a = 0.72500(5), c = 0.38532(1) nm, R1 = 0.0151, wR2 = 0.0323). Features of the structure were briefly discussed.

Keywords: Aluminum, Indium, single crystal, crystal structure.

References:

    1. Gupta S., Suresh K.G. Review on magnetic and related properties of RTX compounds. J. Alloys Compd. 2015. Vol. 618. P. 562–606. (https://doi.org/10.1016/j.jallcom.2014.08.079).
    2. Ferro R., Marazza R., Rambaldi G. Equiatomic ternary phases in the alloys of the rare earths with indium and nickel or palladium. Z. Metallkd. 1974. Vol. 65. P. 37–39. (https://doi.org/10.1515/ijmr-1974-650106).
    3. Kalychak Ya.M., Zaremba V.I., Pöttgen R., Lukachuk M., Hoffmann R.-D. Rare Earth–Transition Metal–Indides. In: K.A. Gschneidner, Jr., J.-C. Bünzli, V. K. Pecharsky (Eds.). Handbook on the Physics and Chemistry of Rare Earths. Elsevier, Amsterdam. 2005. Vol. 34. P. 1–133. (https://doi.org/10.1016/S0168-1273(04)34001-8).
    4. Oesterreicher H. Structural and magnetic studies on rare-earth compounds RNiAl and RCuAl. J. Less-Common Met. 1973. Vol. 30. P. 225–236. (https://doi.org/10.1016/0022-5088(73)90109-4).
    5. Godnek Ł., Żukowski J., Bałanda M., Kaczorowski D., Szytuła A. Magnetism and electronic structures of hexagonal 1:1:1 rare earth-based intermetallic compounds. Mater. Sci.-Pol. 2008. Vol. 26(4). P. 815–820.
    6. Merlo F., Cirafici S., Canepa F. Structural anomaly in GdNiAl: a crystallographic, electric and magnetic investigation. J. Alloys Compd. 1998. Vol. 266. P. 22–25. (https://doi.org/10.1016/S0925-8388(97)00505-7).
    7. Jarosz J., Talik E., Mydlarz T., Kusz J., Böhm H., Winiarski A. Crystallographic, electronic structure and magnetic properties of the GdTAl; T = Co, Ni and Cu ternary compounds. J. Magn. Magn. Mater. 2000. Vol. 208. P. 169–180. (https://doi.org/10.1016/S0304-8853(99)00592-2).
    8. Danis S., Javorsky P., Rafaja D. Magneto-crystalline anisotropy in TbPdIn, DyNiAl and GdNiAl studied by using X-ray powder diffraction at low temperatures. J. Alloys Compd. 2002. Vol. 345. P. 10–15. (https://doi.org/10.1016/S0925-8388(02)00332-8).
    9. Merlo F., Fornasini M.L., Cirafici S., Canepa F. Physical properties of GdNiIn. J. Alloys Compd. 1998. Vol. 267. P. L12–L13. (https://doi.org/10.1016/S0925-8388(97)00541-0).
    10. Canepa F., Napoletano M., Palenzona A., Merlo F., Cirafici S. Magnetocaloric properties of GdNiGa and GdNiIn intermetallic compounds. J. Phys. D: Appl. Phys. 1999. Vol. 32. P. 2721–2725. (https://doi.org/10.1088/0022-3727/32/21/303).
    11. Tyvanchuk Y.B., Kalychak Y.M., Gondek Ł., Rams M., Szytuła A., Tomkowicz Z. Magnetic properties of RNi1-xIn1+x (R = Gd–Er) compounds. J. Magn. Magn. Mater. 2004. Vol. 277. P. 368–378. (https://doi.org/10.1016/j.jmmm.2003.11.018).
    12. Korte B. J., Pecharsky V.K., Gschneidner K.A., Jr. The correlation of the magnetic properties and the magnetocaloric effect in Gd1-xErxNiAl alloys. J. Appl. Phys. 1998. Vol. 84. P. 5677. (https://doi.org/10.1063/1.368830).
    13. Zaremba N., Nychyporuk G., Schepilov Yu., Panakhyd O., Muts I., Hlukhyy V., Pavlyuk V. The CeNiIn1-xMx (M = Al, Ga) systems at 873 K. Ukr. Chem. J. 2018. Vol. 84(12). P. 76–84 (in Ukrainian).
    14. Horiacha M., Savchuk I., Nychyporuk G., Serkiz R., Zaremba V. The YNiIn1-xMx (M = Al, Ga, Sb) systems. Visnyk Lviv Univ. Ser. Chem. 2018. Vol. 59(1). P. 67–75. (https://doi.org/10.30970/vch.5901.067).
    15. Horiacha M., Nychyporuk G., Bönnighausen J., Stegemann F., Pavlyuk V., Pöttgen R., Zaremba V. Structure and properties of phases from solid solutions YTIn1–xAlx (T = Ni and Cu). Z. Kristallogr. 2023. Vol. 238(1–2). P. 17–25. (https://doi.org/10.1515/zkri-2022-0052).
    16. Horiacha M., Zinko L., Nychyporuk G., Serkiz R., Zaremba V. The GdTIn1–xMx (T = Ni, Cu; M = Al, Ga; 0<x<1) systems. Visnyk Lviv Univ. Ser. Chem. 2017. Vol. 58(1). P. 77–85 (in Ukrainian).
    17. Horiacha M., Halyatovskii B., Horiacha S., Nychyporuk G., Pöttgen R., Zaremba V. The TbNiIn1–xMx (M=Al, Ge, Sb) systems. Visnyk Lviv Univ. Ser. Chem. 2020. Vol. 61(1). P. 52–62 (in Ukrainian). (https:/doi.org/10.30970/vch.6101.052).
    18. Klicpera M., Javorský P., Daniš S. The change of anisotropy in TbNi(Al, In) compounds studied by low temperature X-ray diffraction. J. Phys. Conf. Ser. 2011. Vol. 303. P. 012031(6).(https://doi.org/10.1088/1742-6596/303/1/012031).
    19. Petříček V., Dušek M., Palatinus L. Crystallographic Computing System JANA 2006: Generalfeatures. Z. Kristalogr. 2014. Vol. 229(5). P. 345–352. (https://doi.org/10.1515/zkri-2014-1737).
    20. Krypyakevych P.I., Markiv V.Ya., Mel’nyk E.V. The crystal structure of the compounds ZrNiAl, ZrCuGa and their analogue. Dopov. AN URSR, Ser. A. 1967. P. 750–753 (in Ukrainian).
    21. Emsley J. The Elements: 2-nd ed. Oxford: ClarendonPress, 1991. 251 p.
    22. Szytuła A., Tyvanchuk Y.B., Jaworska Golab T., Zarzycki A., Kalychak Y.M., Gondek Ł., Stüsser N. Magnetic properties of the RCuIn (R=Ce, Nd, Gd, Tb, Dy, Ho, Er) and R2CuIn3 (R=Ce, Gd, Tb, Dy) compounds. Chem. Met. Alloys. 2008. Vol. 1. P. 97–101. (https://doi.org/10.30970/cma1.0012).
    23. Horiacha M., Nychyporuk G., Pöttgen R., Zaremba V. The crystal structure of the phases in the GdCuIn1–xAlx system. Proc. Shevchenko Sci. Soc. Chem. Sci. 2019. Vol. LVI. P. 122–129. (in Ukrainian). (https://doi.org/10.37827/ntsh.chem.2019.56.122).

How to Cite

HORIACHA M., NYCHYPORUK G., GALADZHUN Ya., PÖTTGEN R., ZAREMBA V. CRYSTAL STRUCTURE OF PHASES FROM GdNiIn1-xAlx SOLID SOLUTION Proc. Shevchenko Sci. Soc. Chem. Sci. 2023. Vol. LXXIII. P. 38-44.

Download the pdf