Oksana HERTSYK1, Myroslava KOVBUZ1, Olga YEZERSKA2, Natalia PANDIAK3, Myroslava TASHAK4
1Ivan Franko Lviv National University, Kyryla and Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: o_hertsyk@yahoo.com
2Fraunhofer Institut Fertigungstechnik Materialforschung, Бремен, Germany
3Ukrainian National Forestry University, Gen. Chuprynka Str. 103, 79057 Lviv, Ukraine
4Lviv Polytechnic National University, St. Geoge`s Square, 5, 79013 Lviv, Ukraine
DOI: https://doi.org/10.37827/ntsh.chem.2023.73.144
FEATURES OF ADSORPTION OF ALCOHOL ON THE SURFACE AMORPHOUS METAL ALLOYS
Adsorption has a specific effect on electrochemical processes, especially those occurring in heterogeneous systems. Adsorption of alcohols on the surface of amorphous alloys occurs according to the scheme of a multistage heterogeneous process with the participation of metal components of the surface: first, molecules such as isopropanol competitively displace water molecules and are attracted to the surface due to electrostatic forces. Along with the physical interaction, a donor-acceptor interaction can occur by charge transfer from the H-O group of the alcohol to individual metal atoms of the AMА surface or their oxides. Voltammetric characteristics of the contact and outer surfaces of the original AMА in a 0.5 M NaCl aqueous solution at 293 K confirmed the higher probability of the appearance of oxide protective layers on the surface of those amorphous metal alloys that contain, in addition to ferrum, metals with a higher affinity for oxygen and the probability of the formation of reactive intermetallic compounds . Since the outer surface of the alloy strip during the cooling of the melt comes into contact with air and has the possibility to be covered with a protective oxide film, this leads to a decrease in the corrosion current and a shift of the corrosion potentials in the anodic direction under the same research conditions. Being adsorbed on the metal surface, isopropanol molecules destroy the protective oxide layer and activate the dissolution of the metal. This is especially noticeable on the outer surface of Fe78.5Ni1.0Mo0.5Si14.0B6.0 and Fe73.1Cu1.0Nb3.0Si15.5B7.4 tapes. Nevertheless, in Fe51.7Ni21.7Cr6.2Mo0.6V1.5Si5.2B13.1, which contains elements Cr, Mo, V, oxides, having high adhesion to the surface of the alloy, cannot be replaced by isopropanol molecules. As a result of pre-exposure of AMC electrodes in isopropyl alcohol, adsorption layers and additional diffusion layers are created on the surface, which are sufficient to block the corrosion process. However, the adhesion of alcohol molecules is short-lived, so it is impractical to use isopropyl alcohol to inhibit corrosion processes.
Keywords: : amorphous metal alloys, electrochemical parameters, adsorption, isopropyl alcohol.
References:
-
1. Russew K., Stojanova L. Properties and Applications of Amorphous Metallic Alloys. In: Glassy Metals. Springer,
Berlin, Heidelberg, 2016. – 250 p. (https://doi.org/10.1007/978-3-662-47882-0_13).
2. Davies H., Gibbs M. Amorphous Alloys. Handbook of Magnetism and Advanced Materials. London: John Wiley & Sons,
2007. 1801 р. (https://doi.org/10.1002/9780470022184.hmm401).
3. Souza C.A.C., Ribeiro D.V., Kiminami C.S. Corrosion resistance of Fe–Cr-based amorphous alloys: An overview. J.
Non-Crystal. Solids. 2016. Vol. 442. P. 56–66. (https://doi.org/10.1016/j.jnoncrysol.2016.04.009).
4. Hertsyk О.М., Kovbuz М.О., Hula Т.H., Korniy S.А., Yezerska O.A., Pandiak N.L. Corrosion Resistance of Modified
Amorphous Alloys Based on Iron in Sulfuric Acid. Mater. Sci. 2021. Vol. 56(6). P. 755–763.
(https://doi.org/10.1007/s11003-021-00492-8).
5. Hertsyk O.M., Hula T.H., Kovbuz M.O., Pandiak N.L., Ezers’ka O.A. Adsorption of organic peroxides on the
surface of amourphous alloys for the drugs immobilization. Phys. Chem. Solid State. 2022. Vol. 23(3). Р. 517–523.
(https://doi.org/10.15330/pcss.23.3.517-523).
6. Rugmini A.P., Anupama R.P., Ramya K., Sam J., Abraham J. Protection of mild steel in hydrochloric acid using
methyl benzimidazole substituted 1, 3, 4 - oxadiazole: computational, electroanalytical, thermodynamic and kinetic
studies. J. Adhes. Sci. Technol. 2019. Vol. 33(20). P. 2227–2249.
(https://doi.org/10.1080/01694243.2019.1637169).
7. Boychyshyn L.M., Hertsyk O.M. Amorphous metal alloys: processes at the boundary of phase separation. – Lviv:
Scientific and Publishing Center of the Shevchenko Scientific Society, 2022. – 152 р. (in Ukrainian).
8. Shijie Zhu, Zhongbin Ye, Zhezhi Liu, Zhonghua Chen, Jun Li, Zuping Xiang. Adsorption Characteristics of Polymer
Solutions on Media Surfaces and Their Main Influencing Factors. Polymers. 2021. Vol. 13(11). P. 1774.
(https://doi.org/10.3390/polym13111774).
9. Bi H., Meng S., Li Y., Guo K., Chen Y., Kong J., Yang P., Zhong W., Liu B. Deposition of PEG onto PMMA
microchannel surface to minimize nonspecific adsorption. Lab Chip. 2006. Vol. 6. P. 769–775.
(https://doi.org/10.1039/B600326E).
10. Boichyshyn L., Danyliak M.-O., Partyka М. Nanogeometry of surface of the Fe82Nb2B14REМ2 (REМ = Y, Gd, Tb, Dy)
amourphous alloys. Visn. Lviv Univer. Ser. Chem. 2017. Vol. 58(2). P. 507–514. (in Ukrainian).
11. Hennayaka H.M.M.N., Lee H.S., Yi S. Surface oxidation of the Fe based amorphous ribbon annealed at
temperatures below the glass transition temperature. J. Alloys Compd. 2015. Vol. 618. P. 269–279.
(https://doi.org/10.1016/j.jallcom.2014.08.160).
12. Guo C., Zheng Y., Ran J., Xie F., Jaroniec M., Qiao S.Z. Engineering High-Energy Interfacial Structures for
High-Performance Oxygen-Involving Electrocatalysis. Angew. Chem. Int. Ed. 2017. Vol. 56(29). P. 8539–8543.
(https://doi.org/10.1002/anie.201701531).
13. Gupta S., Qiao L., Zhao S., Xu H., Lin Y., Devaguptapu S.V., Wang X., Swihart M.T., Wu G. Highly Active and
Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Template‐Free Graphitization for
Bifunctional Oxygen Reduction and Evolution. Adv. Energy Mater. 2016. Vol. 6. P. 1601198.
(https://doi.org/10.1002/aenm.201601198).
14. Xiao-Meng Liu, Xiaoyang Cui, Kamran Dastafkan, Hao-Fan Wang, Cheng Tang Recent advances in spinel-type
electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. J. Energy Chem. 2021. Vol. 53.
P. 290–302. (https://doi.org/10.1016/j.jechem.2020.04.012).
15. Miracle D.B. The efficient cluster packing model – an atomic structural model for metallic glasses. Acta
Mater. 2006. Vol. 54(16). P. 4317–4336.
(https://doi.org/10.1016/j.actamat.2006.06.002).
16. Sheng H.W., Luo W.K., Alamgir F.M., Bai J.M., Ma E. Atomic packing and short-to-medium-range order in metallic
glasses. Nature. 2006. Vol. 439. P. 419–425.
(https://doi.org/10.1038/nature04421).
17. Cheng Y.Q., Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater.
Sci. 2011. Vol. 56. P. 379–473. (https://doi.org/10.1016/j.pmatsci.2010.12.002).
18. Ma D., Stoica A.D., Wang X.L. Power-law scaling and fractal nature of medium-range order in metallic glasses.
Nat. Mater. 2009. Vol. 8(1). P. 30–34.
(https://doi.org/10.1038/nmat2340).
19. Nykyruy Y., Kulyk Y, Mudry S., Prunitsa V., Borysiuk A. Structure and physical properties changes of Fe-based
amorphous alloy induced by Joule-heating. Appl. Nanosc. 2023. Р. 1-12.
(https://doi.org/10.1007/s13204-023-02871-w).
20. Smolyakov O.V., Girzhon V.V., Mudry S.I., Nykyruy Y.S. Explosive crystallisation of metal glasses based on
Fe-B during pulsed laser heating. Experiment and modelling. Arch. Mater. Sci. Engin. 2023. Vol. 119(2). P. 49–55.
(https://doi.org/10.5604/01.3001.0053.4740).
How to Cite
HERTSYK O., KOVBUZ M., YEZERSKA O., PANDIAK N., TASHAK M. Features of adsorption of alcohol on the surface amorphous metal alloys. Proc. Shevchenko Sci. Soc. Chem. Sci. 2023. Vol. LXXIII. P. 144-153.