PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXVI 2021

Yuriy VERBOVYTSKYY, Ihor ZAVALIY, Pavlo LYUTYY, Taras ZASADNYY

Karpenko Physico-Mechanical Institute, NAS of Ukraine, 5 Naukova Str, 79060 Lviv, Ukraine
e-mail: xintermetallics@gmail.com

DOI: https://doi.org/10.37827/ntsh.chem.2021.66.098

SYNTHESIS, STRUCTURE AND HYDROGEN SORPTION PROPERTIES OF THE SELECTED RMgM4 (R = Y, Ce; M = TRANSITION METAL) ALLOYS

New RMgM4 (R = Y, Ce; M = Ni, Cu, Co, Fe, Mn) alloys were synthesized by the sintering method and characterized by X-ray powder diffraction method. All phases belong to the SnMgCu4 structural type (space group F-43m). Rare earth metal atoms occupy the position of Mg atoms (4a), Mg atoms are located in the Sn sites (4c), and transition metal atoms distribute the Cu positions (16e). Three selected alloys were hydrogenated. The alloys easily absorb hydrogen at room temperature and maximum pressure up to 10 bar. One orthorhombic YMgNi3FeH4.2 (structural type NdMgNi4D3.6, spatial group Pmn21) and two cubic YMgNi2Fe2H5.0 and YMgCo2Cu2H3.8 (structural type LaMgNi4D4.85, spatial group F-43m) were synthesized. Volume expansion of the unit cell for saturated hydrides compared to their parent alloys is in the range 12–14%. In general, volume evolution is in good agreement with absorbed quantity of hydrogen.
Electrode materials for the selected alloys were made and their main electrochemical characteristics (maximum discharge capacity and cyclic stability) were established. The nature of the transition metal is crucial in yttrium alloys. RMgM4 alloys containing only Co, Fe, Cu are characterized by very low values of the discharge capacity, which does not exceed 50 mAh/h. YMgNi4-based alloys have elevated discharge capacity. Replacing nickel in the YMgNi4 alloys by iron or manganese leads to some increase and then decrease discharge capacity. It is highest in the YMgNi3Mn (287 mAh/h) and YMgNi3.5Fe0.5 (178 mAh/h) electrodes. When CeMgCo4 is replaced by nickel the value of discharge capacity decreases. It is high only in alloys with the highest cobalt content: CeMgNiCo3 (Cmax = 104 mAh/h).

Keywords: rare earth metals, magnesium, alloys, sintering, hydrides, crystal structure, electrochemical properties.

References:

    1. Verbovytskyy Yu.V., Zavaliy I.Yu. New metal-hydride electrode materials based on R1–xMgxNi3–4 alloys for chemical current sources. Materials science. 2016. Vol. 51(4). P. 443–456. (https://doi.org/10.1007/s11003-017-9997-6).
    2. Verbovytskyy Yu.V., Zavaliy I.Yu. New metal-hydride electrode materials based on R2–xMgxNi4 alloys for chemical current sources. Materials science. 2017. Vol. 52(6). P. 747–759. (https://doi.org/10.1007/s11003-017-0018-6).
    3. Liu Y, Cao Y, Huang L, Gao M, Pan H. Rare earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries. J. Alloys Compd. 2011. Vol. 509(3). P. 675–686. (https://doi.org/10.1016/j.jallcom.2010.08.157).
    4. Shtender V.V., Denys R.V., Paul-Boncour V., Verbovytskyy Yu.V., Zavaliy I.Yu. Effect of Co substitution on hydrogenation and magnetic properties of NdMgNi4 alloy. J. Alloys Compd. 2015. Vol. 639. P. 526−532. (https://doi.org/10.1016/j.jallcom.2015.03.187).
    5. Verbovytskyy Yu.V., Shtender V.V., Lyutyy P.Ya., Zavaliy I.Yu. Electrode materials based on LaMgNi4–xCox (0 < x < 1) alloys. Powder Met. Met. Ceramics. 2017. Vol. 55. P. 559−566. ( https://doi.org/10.1007/s11106-017-9839-y).
    6. Verbovytskyy Yu.V., Shtender V.V., Hackemer A., Drulis H., Zavaliy I.Yu., Lyutyy P.Ya. Solid-gas and electrochemical hydrogenation properties of the La1‑xNdxMgNi4–yCoy alloys. J. Alloys Compd. 2018. Vol. 741. P. 307−314. (https://doi.org/10.1016/j.jallcom.2018.01.067).
    7. Oprysk V.O., Verbovytskyy Yu.V., Shtender V.V., Lyutyy P.Ya., Zavaliy I.Yu. The Pr1-xLaxMgNi4–yCoy alloys: Synthesis, structure and hydrogenation properties. Solid State Sci. 2018. Vol. 84. P. 112–119. (https://doi.org/10.1016/j.solidstatesciences.2018.08.009).
    8. Verbovytskyy Yu., Kosarchyn Yu., Zavaliy I. Solid gas and electrochemical hydrogenation properties of the selected R,R’MgNi4–xMx (R, R’=La, Pr, Nd; M=Fe, Mn; x=0.5, 1) alloys. French-Ukrainian J. Chem. 2020. Vol. 8. P. 126–139. (https://doi.org/10.17721/fujcV8I2P126-139).
    9. Verbovytskyy Yu., Oprysk V., Paul-Boncour V., Zavaliy Yu., Berezovets V., Lyutyy P., Kosarchyn Yu. Solid gas and electrochemical hydrogenation of the selected alloys (R’,R’’)2-xMgxNi4–yCoy (R’, R’’=Pr, Nd; x=0.8–1.2; y=0–2). J. Alloys Compd. 2021. Vol. 876. P. 1–9. (https://doi.org/10.1016/j.jallcom.2021.160155).
    10. Liu J., Han S., Li Y., Zhang L., Zhao Y., Yang S., Liu B. Phase structures and electrochemical properties of La–Mg–Ni-based hydrogen storage alloys with superlattice structure. Int. J. Hydrogen Energy. 2016. Vol. 41(44). P. 20261–20275. (https://doi.org/10.1016/j.ijhydene.2016.08.149).
    11. Gao Z., Zhang B., Luo Y., Li H. Correlation between phase structure and electrochemical properties of Ce2Ni7-type La–RE–Mg–Ni (RE = Nd, Sm, Y) alloys: A comparative study. J. Taiwan Institute Chem. Eng. 2018. Vol. 89. P. 183–190. (https://doi.org/10.1016/j.jtice.2018.05.013).
    12. Zhang Y., Ji Y., Zhang W., Hu F., Qi Y., Zhao D. Electrochemical hydrogen storage behaviors of as-milled Mg–Ce–Ni–Al–based alloys applied to Ni–MH battery. Applied Surface Sci. 2019. Vol. 494. P. 170–178. (https://doi.org/10.1016/j.apsusc.2019.07.158).
    13. Li Y., Liu Z., Zhang G., Zhang Y., Ren H. Novel A7B23-type La–Mg–Ni–Co compound for application on Ni–MH battery. J. Power Sources. 2019. Vol. 441. P. 1–7. (https://doi.org/10.1016/j.jpowsour.2019.05.073).
    14. Wang W., Guo W., Liu X., Zhang S., Zhao Y., Li Y., Zhang L. Han S. The interaction of subunits inside superlattice structure and its impact on the cycling stability of AB4-type La–Mg–Ni-based hydrogen storage alloys for nickel-metal hydride batteries. J. Power Sources. 2020. Vol. 445. No. 227273. P. 1–9. (https://doi.org/10.1016/j.jpowsour.2019.227273).
    15. Liu J., Zhu S., Chen X., Xu J., Zhang L., Yan K., Chen W., Cheng H., Han S. Superior electrochemical performance of La–Mg–Ni-based alloys with novel A2B7–A7B23 biphase superlattice structure. J. Mat. Sci. Tech. 2021. Vol. 80. P. 128–138. (https://doi.org/10.1016/j.jmst.2020.10.081).
    16. Wan C., Hu W., Denys R., Nwakwuo C., Solberg K., Yartys V. Effect of Mg content in the La3–xMgxNi9 battery anode alloys on the structural, hydrogen storage and electrochemical properties. J. Alloys Compd. 2021. Vol. 856. P. 1–7. (https://doi.org/10.1016/j.jallcom.2020.157443).
    17. Wang W., Xu G., Zhang L., Ma C., Zhao Y., Zhang H., Ding Z., Fu Y., Li Y., Han S. Electrochemical features of Ce2Ni7-type La0.65Nd0.15Mg0.25Ni3.20M0.10 (M=Ni, Mn and Al) hydrogen storage alloys for rechargeable nickel metal hydride battery. J. Alloys Compd. 2021. Vol. 861. P. 1–7. (https://doi.org/10.1016/j.jallcom.2020.158469).
    18. Verbovytskyy Yu.V., Zavaliy I.Yu., Berezovets V.V., Lyutyy P.Ya. Solid Gas and Electrochemical Hydrogenation Properties of the R1-xR’xMgNi4–yCoy (R, R’=Y, La, Ce) Alloys. Physics Chem. Solid State. 2020. Vol. 21(3). P. 503–509. (https://doi.org/10.15330/pcss.21.3.503-509).
    19. Wang Z.M., Zhou H.Y., Cheng G., Gu Z.F., Yu A.B. Preparation and electrode properties of new ternary alloys: REMgNi4 (RE=La, Ce, Pr, Nd). J. Alloys Compd. 204. Vol. 384. P. 279–282. (https://doi.org/10.1016/j.jallcom.2004.04.087).
    20. Denys R.V., Riabov A.B., Černý R., Koval’chuk I.V., Zavaliy I.Yu. New CeMgCo4 and Ce2MgCo9 compounds: Hydrogenation properties and crystal structure of hydrides. J. Solid State Chem. 2012. Vol. 187. P. 1–6. (https://doi.org/10.1016/j.jssc.2011.10.040).
    21. Shtender V.V., Denys R.V., Paul-Boncour V., Riabov A.B., Zavaliy I.Yu. Hydrogenation properties and crystal structure of YMgT4 (T=Co, Ni, Cu) compounds. J. Alloys Compd. 2014. Vol. 603. P. 7−13. (https://doi.org/10.1016/j.jallcom.2014.03.030).
    22. Czub J., Shtender V.V., Przewoźnik J., Zarzeska A., Hoser A., Gondek Ł. On the properties of the novel CeMgNi2T2 (T=Co, Cu) alloys and their hydrides. J. Alloys Compd. 2020. Vol. 814. P. 1−7. (https://doi.org/10.1016/j.jallcom.2019.152244).
    23. Guénée L., Favre-Nicolin V., Yvon K. Synthesis, crystal structure and hydrogenation properties of the ternary compounds LaNi4Mg and NdNi4Mg. J. Alloys Compd. 2003. Vol. 348. P. 129−137. (https://doi.org/10.1016/S0925-8388(02)00797-1).
    24. Chotard J., Sheptyakov D., Yvon K. Hydrogen induced site depopulation in the LaMgNi4-hydrogen system. Z. Kristallogr. 2008. Vol. 223. P. 690–696. (https://doi.org/10.1524/zkri.2008.1124).

How to Cite

VERBOVYTSKYY Yu., ZAVALIY I., LYUTYY P., ZASADNYY T. SYNTHESIS, STRUCTURE AND HYDROGEN SORPTION PROPERTIES OF THE SELECTED RMgM4 (R = Y, Ce; M = TRANSITION METAL) ALLOYS. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021 Vol. LXVI. P. 98-106.

Download the pdf