PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXVI 2021

Оksana HERTSYK, Myroslava KOVBUZ, Tetiana HULA, Mariya LOPACHAK

Ivan Franko Lviv National University, Kyryla and Mefodiya Str., 6, 79005 Lviv, Ukraine

DOI: https://doi.org/10.37827/ntsh.chem.2021.66.057

CHEMICAL MODIFICATION OF THE AMORPHOUS METALLIC ELECTRODES

The modification of the electrode surface is carried out by immobilizing various substances, molecules or chemical groups on a metallic conductive surface. Immobilization is done by physical adsorption of compounds with low molecular weight or by chemical interaction.
It was investigated surface modification of the amorphous metallic alloys Fe78.5Ni1.0Mo0.5Si6.0B14.0 and Fe73.1Cu1.0Nb3.0Si15.5B7.4 by solutions of oligoperoxide based on vinyl acetate, 2-tert-butylperoxy-2-methyl-5-hexen-3-yne and maleic anhydride with different concentrations.
Films of the investigated oligomer were formed on the surface of amorphous alloys by keeping metallic samples for 10 and (10 + 10) min in preprepared (0.1 ÷ 1.0)% aqueous-ammonia solutions of oligoperoxide. Drying was carried out in an air atmosphere at room temperature 293 K.
Amorphous alloy Fe73.1Cu1.0Nb3.0Si15.5B7.4 has higher corrosion resistance than Fe78.5Ni1.0Mo0.5Si6.0B14.0, because of more positive potential values. The setting time of the potential on the outer surface in 2.5 times longer than on the contact. Different properties of both surfaces are manifested in the affinity for solutions of film formers. The process of film formation is more active on the outer surface of the amorphous alloys.
Evaluation of the films strength deposited on the surface of amorphous iron-based alloys from (0.1 ÷ 1.0)% aqueous-ammonia solutions revealed the dependence of the film formers affinity not only on the elemental composition of amorphous alloys based on iron, but also on the degree of crystallinity.
It was found that the stability of the obtained films significantly depends on the concentration of the film-forming solution. With increasing concentration of the oligoperoxide solution, it is possible to change the conformation of the adsorbed macromolecules and rearrange the adsorption layer, which often reduces the density of the film. The densest films are formed on the surface of Fe-based alloys with 0.5% aqueous-ammonia solution of oligoperoxide.
The results of physicochemical investigations of the oligoperoxide films stability on the surface of amorphous alloys showed that after 10 minutes stable films are formed on the contact and outer surfaces, and increasing the time of film formation deteriorates their quality.

Keywords: amorphous metallic alloy, modification, oligoperoxide.

References:

    1. Matthew G. Moffitt. Self-Assembly of Polymer Brush-Functionalized Inorganic Nanoparticles: From Hairy Balls to Smart Molecular Mimics. J. Phys. Chem. Lett. 2013. Vol. 4(21). Р. 3654–3666. (https://doi.org/10.1021/jz401814s).
    2. Malynych S., Luzinov I., Chumanov G. Poly(Vinyl Pyridine) as a Universal Surface Modifier for Immobilization of Nanoparticles. J. Phys. Chem. B. 2002. Vol. 106. P. 1280. (https://doi.org/10.1021/jp013236d).
    3. Zaichenko A., Mitina N., Kovbuz M., Artym I., Voronov S. Surface-Active Metal-Coordinated Oligoperoxidic Radical Initiators. 1. The Interrelation Between the Microstructure of Ditertiary Oligoperoxides and their Ability to Form Stable Metal Complexes. J. Polym. Sci. 2000. Vol. 38. P. 516–527.(https://doi.org/10.1002/(SICI)1099-0518(20000201)38:3<516::AID-POLA18>3.0.CO;2-R).
    4. Thamizharasi S., Venkata Rami Reddy A., Balasubramanian S. Synthesis and Characterization of Polymer – Metal Complexes of Copper (II) and Nickel (II) derived from Poly(2-hidroxy-4(meth)acryloxyacetophenoneoxime). React. and Funct. Polym. 1999. Vol. 40(2). P. 143–153. (https://doi.org/10.1016/S1381-5148(98)00021-2).
    5. Kromer C., Dunsch L. Voltammetric and Spectroscopic Investigation of Binding in Complexes of Divalent Metal Ions with Styrene-Maleic Acid – Copolymer and Monomeric Analogues. Electrochim. Acta. 1998. Vol. 55(5). P. 819–829. (https://doi.org/10.1016/S0013-4686(98)00241-2).
    6. Casolaro M., Bignotti F., Sartore L., Penco M. The thermodynamic of basic and amphoteric poly(amido-amine)s containing peptide nitrogens as potential binding sites for metal ions. Part I. Polymer. 2001. Vol. 42. P. 903–912. (https://doi.org/10.1016/S0032-3861(00)00482-1).
    7. Perrier S., Armes S.P., Wang X.S., Malet F., Haddleton D.M. Copper (I) - Mediated Radical Polymerization of Methacrylates in Aqueous Solution. J. Polym. Sci. Part A: Polym. Chem. 2001. Vol. 39(10). P. 1696–1707. (https://doi.org/10.1002/pola.1147).
    8. Vakarin E., Duda Yu., Holovko M. Polymer near a solid surface. Fused hard sphere chain model. J. Molec. Liq. 1998. Vol. 75. P. 77–95. (https://doi.org/10.1016/s0167-7322(97)00050-0).
    9. Zaichenko A., Bolshakova., Mitina N., Shevchuk O., Bily A., Lobaz V. The Synthesis and rheological characteristics of colloidal systems containing functional magnetic nanoparticles. J. Magn. Magn. Mater. 2005. Vol. 289. P. 17-20. (https://doi.org/10.1016/j.jmmm.2004.11.006).
    10. Zaichenko A., Shevchuk O., Samaryk V., Voronov S. The peculiarities of homogeneous nucleation of reactive CuО colloidal particles in the presence of functional oligoperoxides. J. Coll. Interf. Sci. 2004. Vol. 275. P. 204–213. (https://doi.org/10.1016/j.jcis.2004.01.074).
    11. Siqueira D.F., Breiner U., Stadler R. Stamm M. Adsorption Behavior of Functionalized Polystyrene – blockm – Polybutadiene With Rondomly Attached Adsorbing Sites. Langmuir. 1995. Vol. 11(5). Р. 1680–1687. (https://doi.org/10.1021/la00005a042).
    12. Kostruba A.M., Fedorko V.F., Skorobogatiy Ya.P., Korodenko G.D. Investigation of the adsorption behavior of polymethacrylic asid on silicon substrates. Ukr. J. Phys. Opt. 2001. V. 2(1). P. 35–39. (in Ukrainian). (https://doi.org/10.3116/16091833/2/1/21/2001).
    13. Delle Site L., Abrams C. F., Alavi A., Kremer K. Polymers near metal surfaces: selective adsorption and global conformations. Phys Rev Lett. 2002. Vol. 89(15). P. 156103. (https://doi.org/10.1103/PhysRevLett.89.156103).
    14. Delle Site L., Abrams C. F., Alavi A., Kremer K. BPA-PC on a Ni(III) Surface:  The Interplay between Adsorption Energy and Conformational Entropy for Different Chain-End Modifications. J. Am. Chem. Soc. 2004. Vol. 126(9). P. 2944–2955. (https://doi.org/10.1021/ja0387406).
    15. Sarabadani J., Milchev A., Vilgis T.A. Structure and dynamics of polymer melt confined between two solid surfaces: A molecular dynamics study. J. Chem. Phys. 2014. Vol. 141. P. 044907. (https://doi.org/10.1063/1.4890820).
    16. Maurer R.J., Ruiz V.G., Camarillo-Cisneros J., Wei Liu, Ferri N., Reuter K., Tkatchenko A. Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory. Progr. Surf. Sci. 2016. Vol. 91(2). P. 72–100. (https://doi.org/10.1016/j.progsurf.2016.05.001).
    17. Nemani S.K., Annavarapu R.K., Mohammadian B., Raiyan A., Heil J., Haque Md. A., Abdelaal A., Sojoudi H. Surface Modification of Polymers: Methods and Applications. Advan. Mater. Interf. 2018. Vol. 5(24). P. 1801247. (https://doi.org/10.1002/admi.201801247).
    18. Feven M. Michael, Anand B. Balaji Surface modification techniques of biodegradable and biocompatible polymers. Biodegr. Biocomp. Polym. Compos. 2018. P. 33–54. (https://doi.org/10.1016/B978-0-08-100970-3.00002-X).
    19. Peng Yi-Yang, Narain R. Modification of polymers. In book: Polym. Sci. and Nanotechn. 2020. P. 95–104. (https://doi.org/10.1016/B978-0-12-816806-6.00005-4).
    20. Alasvand N., Kargozar S., Brouki M., Chauhan N., Mozafari M. Functionalized polymers for drug/gene-delivery applications. Advan. Func. Polym. Biomed. Appl. 2019. P. 275–299. (https://doi.org/10.1016/B978-0-12-816349-8.00014-X).
    21. Hertsyk O.M., Pereverzeva T.H., Boichyshyn L.M., Kovbuz M.O., Pandyak N.L. Influence of heat treatment and oligomeric coatings on the corrosion resistance of amorphous alloys based on aluminum Mat. Sci. 2019. Vol. 54(4). P. 526–534. (https://doi.org/10.1007/s11003-019-00213-2).
    22. Kostruba A., Zaichenko A., Mitina N., Rayevska K., Hertsyk K. Kinetics of the formation and structure of oligoperoxide nanolayers and grafter polymer brushes on glass plate surface Cent. Eur. J. Phys. 2008. Vol. 6(3). P. 454–461. (https://doi.org/10.2478/s11534-008-0097-y).
    23. Kovbuz M.O., Hertsyk O.M., Mitina N.E., Khimyak Y.Z., Bednarska L.M. Formation of protective coating on amorphous metallic surfaces by controlled adsorption of functional oligoperoxides from aqueous solutions. Polish J. Chem. 2008. Vol. 82. P. 93–100.
    24. Zaichenko A.S., Mitina N.E., Kovbuz M.O., Hertsyk O.M. The Colloidal-Chemical Properties and Features of Functional Oligoperoxide Adsorption onto Liquid and Solid Surfaces. Adsorp., Sci. Techn. 2002. Vol. 20(7). P. 647–656. (https://doi.org/10.1260/02636170260504332).
    25. Hertsyk O.M., Kovbuz M.O., Bednarska L.M., Kotur B.Ya Influence of Thermal Treatment on Adsorption Ability of Amorphous Alloys. Adsorp., Sci. Techn. 2002. Vol. 20(6). P 579–587. (https://doi.org/10.1260/026361702321039456).
    26. Swain P.S., Lipowsky R. Contact angles on heterogeneous surfaces: a new look at Cassie's and Wenzel's laws. Langmuir. 1998. Vol. 14(23). P. 6772–6780. (https://doi.org/10.1021/la980602k).
    27. Chenxi Zhu, Wei Jiang, Jinglei Hu, Ping Sun, Aimin Li, Quanxing Zhang Polylactic Acid Nonwoven Fabric Surface Modified with Stereocomplex Crystals for Recyclable Use in Oil/Water Separation. ACS Appl. Polym. Mater. 2020. Vol. 2(7). P. 2509–2516. (https://doi.org/10.1021/acsapm.9b01197).
    28. Kostruba A., Stetsyshyn Yu., Zaichenko A., Mitina N. Ellipsometric ex-situ study of fluorescent oligoperoxide nanolayers with europium complexes adsorbed on a glass surface. Formation and structure. Ukr. J. Phys. Opt. 2009. Vol. 10. P. 175–181. (https://doi.org/10.3116/16091833/10/4/175/2009).
    29. Michael L.F. Understanding the effect of surfactant aggregation on corrosion inhibition of mild steel in acidic medium. Corr. Sci. 2002. Vol. 44(12). P. 2865–2870. (https://doi.org/10.1016/S0010-938X(02)00080-X).
    30. Tan C.K., Blackwood D.J. Corrosion protectson by multilayered conducting polymer coatings. Corr. Sci. 2003. Vol. 45. P. 545–557. (https://doi.org/10.1016/S0010-938X(02)00144-0).

How to Cite

HERTSYK О., KOVBUZ М., HULA Т., LOPACHAK М. CHEMICAL MODIFICATION OF THE AMORPHOUS METALLIC ELECTRODES. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021 Vol. LXVI. P. 57-67.

Download the pdf