Yuliia STETSIV, Іrynа ZHURAVETS’KA, Мykhaylo YATSYSHYN, Аnatoliy ZELINSKIY, Оleksandr RESHETNYAK
Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine. e-mail: yuliia.stetsiv@lnu.edu.ua
DOI: https://doi.org/10.37827/ntsh.chem.2021.66.019
THIN POLYANILINE FILMS ON A POLYETHYLENE TEREPHTHALATE SUBSTRATE AS Cr(VI) ADSORBENTS
This work deals with the modification of polyethylene terephthalate film substrate-matrix in situ by polyaniline in the aniline oxidation process, as well as their use as adsorbents to reduce the highly toxic Cr(VI) to less toxic Cr(III). Polyethylene terephthalate films were coated with a layer of polyaniline in aqueous solutions of 0.5 M citric acid at a temperature of 293 K. The structure of polyethylene terephthalate/polyaniline films was examined by X-ray diffraction, scanning electron microscopy, FT-IR and UV-vis spectroscopy. Adsorption was investigated on polyaniline films obtained and washed with distilled water after synthesis, as well as on films additionally doped in citric acid solution. The adsorption of Cr(VI) from aqueous solutions of different concentrations: 10 and 40 mg/L, was studied. The change in electronic spectra was observed using a UV-B spectrophotometer. It is shown that 80–85 % of Cr(VI) is adsorbed by polyaniline films in neutral media during 10 min. It was found that polyaniline is oxidized to pernigraniline in the process of reduction of Cr(VI) to Cr(III). Adsorption studies have shown that polyaniline films on the surface of polyethylene terephthalate films can be an effective adsorbent of Cr(VI) from aqueous solutions. As a result of research, it have been proposed easy-to-prepare, ecological and highly efficient adsorbents based on polyaniline films on flexible polyethylene terephthalate film substrates for removing Cr(VI) from aqueous solutions.
Keywords: polyaniline, polyethyleneterephthalate, citric acid, chromium, adsorption
References:
-
1. Xia S., Song Z., Jeyakumar P. et al. A critical review on bioremediation technologies for Cr(VI)-contaminated
soils and wastewater. Crit. Rev. Environ. Sci. Technol. 2019. Vol. 49(12). P. 1027–1078. (https://doi.org/10.1080/10643389.2018.1564526).
2. Zhitkovich A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011. Vol.
24. P. 1617–1625. (https://doi.org/10.1021/tx200251t).
3. Gorny J., Billon G., Noiriel C. et al. Chromium behavior in aquatic environments: a review. Environ. Rev. 2016.
Vol. 24(4). P. 503–516. (https://doi.org/10.1139/er-2016-0012).
4. Qasem N.A.A., Ramy H.M., Lawal D.U. Removal of heavy metal ions from wastewater: a comprehensive and critical
review. npj Clean Water. 2021. Vol. 4. P. 1–15. (https://doi.org/10.1038/s41545-021-00127-0).
5. Aigbe U.O., Osibote A. A review of hexavalent chromium removal from aqueous solutions by sorption technique
using nanomaterials. J. Environ. Chem. Engineer. 2020. P. 104503. (https://doi.org/10.1016/j.jece.2020.104503).
6. Kan С.-C., Ibe A.H., Rivera K.K.P. et al. Hexavalent chromium removal from aqueous solution by adsorbents
synthesized from groundwater treatment residuals. Sustainable Environ. Res. 2017. Vol. 27(4). P. 163–171. (https://doi.org/10.1016/j.serj.2017.04.001).
7. Richard F.C., Bong A.C.M. Aqueous geochemistry of chromium: a review. Water Res. 1991. Vol. 25. P. 807–816. (https://doi.org/10.1016/0043-1354(91)90160-R).
8. Fu F., Wang Q. Removal of heavy metal ins from wastewaters: A review. J. Environ. Manage. 2011. Vol. 92(3). P.
407–418. (https://doi.org/10.1016/j.jenvman.2010.11.011).
9. Kimbrough D.E., Cohen Y., Winer A.M. et al. Critical assessment of chromium in the environment. Crit. Rev.
Environ. Sci. Technol. 1999. Vol. 29(1). P. 1–46. (https://doi.org/10.1080/10643389991259164).
10. WHO Guidelines for Drinking-Water Quality, fourth edition, World Health Organization Geneva. 2011.
11. Fenti A., Chianese S., Iovino P. et al. Cr(VI) Sorption from Aqueous Solution: A Review. Appl. Sci. 2020. Vol.
10(18). P. 6477–6498. (https://doi.org/10.3390/app10186477).
12. Li Y., Gao B., Wu T., et al. Hexavalent chromium removal from aqueous solution by adsorption on aluminum
magnesium mixed hydroxide. Water. Res. 2009. Vol. 43(12). P. 3067–3075. (https://doi.org/10.1016/j.watres.2009.04.008).
13. Barrera-Diaz C.E., Lugo-Lugo W., Bilyeu B. A review of chemical, electrochemical and biological methods for
aqueous Cr(VI) reduction. J. Hazard. Mater. 2012. Vol. 223–224. P. 1–12. (https://doi.org/10.1016/j.jhazmat.2012.04.054).
14. Itankar N., Yogesh P. Management of hexavalent chromium from industrial waste using low-cost waste biomass.
Procedia. Soc. Behav. Sci. 2014. Vol. 133. P. 219–224. (https://doi.org/10.1016/j.sbspro.2014.04.187).
15. Mahmoud M.E., Yakout A.A., Hany A.-A. et al. Speciation and Selective Biosorption of Cr(III) and Cr(VI) Using
Nanosilica Immobilized-Fungi Biosorbents. J. Environ. Engineer. 2015. Vol. 141(4). P. 04014079. (https://doi.org/10.1061/(asce)ee.1943-7870.0000899).
16. Taghizadeh A., Taghizadeh M., Jouyandeh M. et al. Conductive polymers in water treatment: A review. J.
Molecular Liq. 2020. Vol. 312. P. 113447. (https://doi.org/10.1016/j.molliq.2020.113447).
17. Yatsyshyn M., Makogon M., Reshetnyak O. et al. Properties of the hybrid glauconite/ polyaniline composites
synthesized in the aqueous citrate acid solutions. Chem. Chem. Technol. 2016. Vol. 10(4). P. 429–435 (in
Ukrainian). (https://doi.org/10.23939/chcht10.04.429).
18. Song E., Choi J.-W. Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing. Nanomater.
2013. Vol. 3(3). P. 498–523. (https://doi.org/10.3390/nano3030498).
19. Olad A., Nabavi R. Application of polyaniline for the reduction of toxic Cr(VI) in water. J. Hazard. Mater.
2007. Vol. 147(3). P. 845–851. (https://doi.org/10.1016/j.jhazmat.2007.01.083).
20. Guo X., Fei G.T., Su H., Zhang L.D. High-performance and reproducible polyaniline nanowire/tubes for removal
of Cr(VI) in aqueous solution. J. Phys. Chem. C. 2011. Vol. 115(5). Р. 1608–1613. (https://doi.org/10.1021/jp1091653).
21. Najim T.S., Salim A.J. Polyaniline nanofibers and nanocomposites: Preparation, charac-terization, and
application for Cr(VI) and phosphate ions removal from aqueous solution. Arabian J. Chem. 2014. Vol. 10(2). P.
S3459–S3467. (https://doi.org/10.1016/j.arabjc.2014.02.008).
22. Baruah P., Mahanta D. Adsorption and reduction: combined effect of polyaniline emeraldine salt for removal of
Cr(VI) from aqueous medium. Bull. Mater. Sci. 2016. Vol. 39(3). P. 875–882. (https://doi.org/10.1007/s12034-016-1204-0).
23. Jiang Y., Liu Z., Zeng G. et al. Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous
solution: a mini review. Environ. Sci. Pollut. Res. 2018. Vol. 25(7). P. 6158–6174. (https://doi.org/10.1007/s11356-017-1188-3).
24. Lei C., Wang C., Chen W. et al. Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous
adsorption and in-situ chemical reduction of hexavalent chromium: Removal efficacy and mechanisms. Sci. Total
Environ. 2020. Vol. 733. P. 139316. (https://doi.org/10.1016/j.scitotenv.2020.139316).
25. Hnizdiukh Yu.A., Yatsyshyn M.M., Reshetnyak O.V. Surface Modification of Polymeric Materials by Polyaniline
and Application of Polyaniline/Polymeric Composites / In: Reshetnyak O.V., Zaikov G.E. (eds.) Computational and
Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group). Toronto;
New Jersey. 2017. P. 423–473. (https://doi.org/10.1201/9781315366357-12).
26. Malinauskas A., Holze R. An in situ UV-Vis spectroelectrochemical investigation of the dichromate reduction at
a polyaniline-modified electrode. Ber. Bunsen-Ges. Phys. Chem. 1998. Vol. 102(7). P. 982–984. (https://doi.org/10.1002/bbpc.19981020713).
27. Krishnani K.K., Srinives S., Mohapatra B.C. et al. Hexavalent chromium removal mechanism using conducting
polymers. J. Hazard. Mater. 2013. Vol. 252–253. P. 99–106. (https://doi.org/10.1016/j.jhazmat.2013.01.079).
28. Stetsiv Yu., Yatsyshyn М., Demchenko P., Serkiz R. Properties of polyaniline films deposited in situ on
polyethylene substrate from solutions of aniline of different concentration. Visn. Lviv Univ. Ser. Chem. 2017. Is.
58(2). P. 357–367 (in Ukrainian).
29. Stetsiv Yu., Demko Kr., Yatsyshyn M., Pandyak N. The kinetics of deposition of polyaniline on polyethylene and
polyethylene terephthalate substrates-matrices. Proc. Shevchenko Sci. Soc. Chem. Sci. 2016. Vol. XLIV. P. 37–49
(in Ukrainian).
30. Stetsiv Yu., Halushchak I., Yatsyshyn M., Serkiz R. properties of polyaniline films deposited in situ of
cellulose acetate substrate. Visn. Lviv Univ. Ser. Chem. 2016. Is. 57(2). P. 418–431 (in Ukrainian).
31. Stejskal J., Sapurina I., Prokeš J. et al. In-situ polymerized polyaniline films. Synth. Met. 1999. Vol.
105(3). P. 195–202. (https://doi.org/10.1016/S0379-6779(99)00105-8).
32. Stetsiv Yu.A., Yatsyshyn M.M., Nykypanchuk D. et al. Characterization of polyaniline thin films prepared on
polyethylene terephthalate substrate. Polym. Bull. 2020. (https://doi.org/10.1007/s00289-020-03426-7).
33. Duboriz I., Pud A. Polyaniline/poly(ethylene terephthalate) film as a new optical sensing material. Sensor.
Actuat. B-Chem. 2014. Vol. 190. P.398–407. (https://doi.org/10.1016/j.snb.2013.09.005).
34. Zhuravets’ka І.М., Stetsiv Yu.A., Yatsyshyn M.M. Adsorption of Cr(VI) ions by polyaniline films deposited on
polyethylene terephthalate films / XII All-Ukrainian scientific conference of students and graduate students
"Karazin chemical readings-2020" (KCR'20), April 21–23, 2020 Kharkiv. Kharkiv: Publishing House of KhNU named
after V.N. Karazin, 2020. P. 130‒131 (in Ukrainian).
35. Stetsiv Yu.A., Zhuravets’ka І.М., Yatsyshyn M.M. et al. Studies of polyaniline thin films on a polyethylene
terephthalate substrate for adsorption of Cr(VI) ions / Collection of articles "Fundamental and applied researches
in modern chemistry and pharmacy" (based on the Materials of the VIII International Correspondence Scientific and
Practical Conference of Young Scientists. Nizhyn, April 23, 2021. Nizhyn, 2021. P. 107–111 (in Ukrainian).
How to Cite
STETSIV Y., ZHURAVETS’KA I., YATSYSHYN M., ZELINSKIY A., RESHETNYAK O. THIN POLYANILINE FILMS ON A POLYETHYLENE TEREPHTHALATE SUBSTRATE AS Cr(VI) ADSORBENTS. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021 Vol. LXVI. P. 19-33.