PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Volume LXVI 2021

Olena AKSIMENTYEVA1, Galyna MARTYNIUK2, Bohdan TSIZH3,4, Yaroslav KOVALSKY1, Mykola YATSKOV5

1Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine
e-mail: aksimen@ukr.net

2 Rivne State Humanities University, Plastova st., 31в, 33000 Rivne, Ukraine
e-mail: galmart@ukr.net

3Stepan Gzytsky National University of Veterinary Medicine and Biotechnologies, 50 Pekarska str., 79010 Lviv, Ukraine

4Kazimierz Wielki University in Bydgoszcz, Chodkiewicza Str. 30, Bydgoszcz 85-064, Poland

5Separated structural subdivision Rivne Technical Professional College of The National University of Water and Environmental Engineering Orlova Str. 35, 33027 Rivne, Ukraine

DOI: https://doi.org/10.37827/ntsh.chem.2021.66.007

FORMATION OF FLEXIBLE ELEMENTS OF OPTICAL SENSORS BASED ON POLYAMINOARENES AND POLYVINYL ALCOHOL COMPOSITES

Today, gas-sensitive films based on electrically conductive polymers (polyaniline and its derivatives, polyoxythiophenes, etc.) are considered to be one of the most promising sensory media for monitoring gases in the environment. Creation of composite sensor media based on conducting polymers and dielectric polymer matrices allows to use the advantages of each of the components – the sensitivity of conjugated polymers to gases combined with flexibility, lightness of polymer matrices, their ability to process, the work of the sensor element at normal temperatures. To create sensitive elements of optical sensors, the conditions for the formation of polymer-polymer composites of conjugated polyaminoarenes (polyaniline, poly-o-anisidine, poly-o-toluidine) in polyvinyl alcohol (PVA) matrices under the conditions of oxidative polymerization of aminoarenes were studied. It is shown that the introduction of PVA into the reaction mixture causes a slowdown in the oxidation rate of monomers. It is possible that the monomer is adsorbed on PVA macrochains, which changes the spatial orientation of the molecules, as well as causes their immobilization on the surface of fibrils, which reduces their ability to oxidize. In the polymerization process, a composite polymeric material is synthesized, which can be formed as a free flexible film with a thickness of 0.05−0.15 mm. According to the analysis of IR spectra in the polymerization process there is an intermolecular interaction between aniline fragments and alcohol groups of PVA. In the optical spectra of composite films, absorption bands at 380–400nm, 450–500 nm, and 700–800 nm, characteristic of conjugated polymer systems, are traced. It was found that flexible composite films exhibit a gas-chromium effect under the action of ammonia, with the absorption band in the region of 700–800 nm being the most sensitive. The time to establish the equilibrium value of the optical density under the action of ammonia does not exceed 10–12 minutes. The obtained composites can be used as flexible elements of optical sensors of gaseous media, in particular, ammonia.

Keywords: oxidative polymerization, optical density, polyvinyl alcohol, polyaminoarene, gas sensor

References:

    1. Aksimentyeva O.I., Tsizh B.R., Chokhan M.I. Sensors for control of gaseous media in the food industry and the environment: a monograph. Lviv: Pyramida, 2017. 284 p. (in Ukrainian).
    2. Kuswandi B. Freshness sensors for food packaging. Reference module in food science. 2017. (https://doi.org/10.1016/B978-0-08-100596-5.21876-3).
    3. Dong X., Zhang X., Wu X., Cui H., Chen D. Investigation of gas-sensing property of acid-deposited polyaniline thin-film sensors for detecting H2S and SO2. Sensors. 2016. Vol. 16. P. 1888–2003. (https://doi.org/10.3390/s16111889).
    4. Lobacheva G. K., Kairgaliev D. V. Rapid detection of explosives in the air. Science Journal of Volgograd State University. Technical and technological innovations. 2015. Vol. 19(4). P. 59-68.(in Russian). (https://doi.org/10.15688/jvolsu10.2015.4.9).
    5. Shahzad N., Khalid U., Iqbal A., Rahman M. Ur. eFresh – a device to detect food freshness. IJSCE. 2018. Vol. 8(3). P. 1–4.
    6. Аksimentyeva O.I., Tsizh B.R., Horbenko Yu.Yu., Martyniuk G.V., Konopelnyk O.I., Chokhan’ M.I. Flexible elements of gas sensors based on conjugated polyaminoarenes. Mol. Cryst. Liq. Cryst. 2018. Vol. 670 (1). Р. 3–10.
    7. Park S.J. Park C.S., Yoon H. Chemo-electrical gas sensors based on conducting polymer hybrids. Polymers. 2017. Vol. 9. (https://doi.org/10.3390/polym9050155).
    8. Pandey S. Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review. J. Sci.: Adv. Mater. Devices. 2016. Vol. 1(4). P. 431–453. (https://doi.org/10.1016/j.jsamd.2016.10.005).
    9. Mustafa F., Andreescu S. Chemical and biological sensors for food-quality monitoring and smart packaging. Foods. 2018. Vol. 7(10). P. 168. (https://doi.org/10.3390/foods7100168).
    10. Tsizh B. R., Chokhan M. I., Aksimentyeva O. I., Konopelnyk O. I., Poliovyi D. O. Sensors Based on Conducting Polyaminoarenes to Сontrol the Animal Food Freshness. Mol. Cryst. Liq. Cryst. 2008. Vol. 497. P. 586–592. (https://doi.org/10.1080/15421400802463043).
    11. Tsizh B., Aksimentyeva O., Goliaka P., Chokhan М. Gas sensors for analysis of food products: monography. Lviv: SPOLOM, 2021. 236 p.
    12. Aksimentyeva O. I., Tsizh B. R., Horbenko Yu. Yu., Stepurа A. L. Detection of the organic solvent vapors by the optical gas sensors based on polyaminoarenes. Scientific Messenger of LNU VMB. Series: Food Technologies. 2021. Vol. 23(95). Р. 20–24.
    13. Laska J., Zak R., Pron F. Conducting blends of polyaniline with conventional polymers. Proceeding of ICSMн96. – Praha, 1996. Paper N3863. P. 117–118. (https://doi.org/10.1016/S0379-6779(97)80673-X).
    14. Mirmchseni A., Wallace G. G. Preparation and characterization of processable electroactive polyaniline-polyvinyl alcohol composite. Polymer. 2003. Vol. 44. P. 3523–3528. (https://doi.org/10.1016/S0032-3861(03)00242-8).
    15. Nynaru V., Jayamani E., Srinivasulu M., Han E. C. W., Bakri M. K. B. Short review on conductive polymer composites as functional materials. Key Eng. Mater. 2019. Vol. 796. P. 17–21. (https://doi.org/10.4028/www.scientific.net/KEM.796.17).
    16. Aksimentyeva О.I., Konopelnyk O.I., Martyniuk G.V. Chapter 9. Synthesis and Physical-Chemical Properties of Composites of Conjugated Polyaminearenes with Dielectric Polymeric Matrixes / eds.: O.V. Reshetnyak, G.E. Zaikov. Computational and Experimental Analysis of Functional Materials. Toronto: Apple Academic Press, 2017. P. 331−370. (https://doi.org/10.1201/9781315366357-9).
    17. Aksimentyeva O., Konopelnyk O., Opaynych I., Tzish B., Ukrainets A., Ulansky Y., Martyniuk G. Interaction of components and conductivity in polyaniline-polymethylmethacrylate nanocomposites. Rev. Adv. Mater. Sci. 2010. Vol. 23. P.185–188.
    18. Grosh M., Аrman А., De S. K., Chatterjee S. Low temperature electrical conductivity of polyaniline-polyvinyl alcohol blends. Solid State Commun., 1997. Vol. 103(11). P.629–633. (https://doi.org/10.1016/S0038-1098(97)00236-6).
    19. Patent №53159A (UA). Method of obtaining conductive polymer composites / Akimentyeva O.I., Ukrainets A.M., Konopelnyk O.I., Yevchuk O.M. / Publ. 15.01.2003. Bull. № 1. (in Ukrainian).
    20. Patent №65401 (UA). Sensor for visual control of ammonia content / Akimentyeva O.I., Tsizh B. R., Chokhan M. I., Yevchuk O.M. / Publ. 12.12.2011, Bull. №23 (in Ukrainian).
    21. Aksimentyeva O.I., Konopelnyk O.I., Tsizh B.R., Yevchuk O.M., Chokhan M.I. Flexible elements of optical sensors based on conjugate polymer systems. Sensor electronics and microsystem technologies. 2011. Vol. 2 (8). P. 34–39. (in Ukrainian).
    22. Aksimentуeva O.I. Electrochemical methods of synthesis and conductivity of conjugated polymers. Lviv.: Svit, 1998. 153 p. (in Ukrainian).
    23. Sverdlova O.V. Electronic spectra in organic chemistry. Leningrad. 1985. 248 p. (in Russian).
    24. Murrell J.N. The Theory of the Electronic spectra of Organic Molecules. J. Chem. Educ. 1965. Vol. 42(1). P. A58. (https://doi.org/10.1021/ed042pA58).
    25. Sapurina, I., Shishov M. Oxidative polymerization of aniline: Polyaniline molecular synthesis and the formation of supramolecular structures. New polymers for special applications / Edited by A.S. Gomes. INTECH. 2012. Vol. 9. P. 251−312. (https://doi.org/10.5772/48758).
    26. Kabanov V.A., Papisov I.M. Complexation between complementary synthetic polymers and oligomers in dilute solutions. Macromolecular compounds, ser. A. 1979. Vol. 21(2). Р. 243–281. (in Russian). (https://doi.org/10.1016/0032-3950(79)90245-4).
    27. Saharan R., Kaur A., Dhawan S.K. Synthesis and characterization of poly(o-metoxy aniline) and its copolymer for electrochromic device energy application. Indian Journal of Pure&Applied Physics. 2015. Vol. 53. P. 316–319.
    28. Tarutina L.I., Pozdniakova F.O. Spectral analysis of polymers. Мoscow.: Khimia. 2011. 268 p. (in Russian).
    29. Маіstrenko L.A., Andreeva О.А. Infrared spectroscopic studies of new generation polymer compounds. Bulletin of KhNTU. 2011. Vol. 4(43). P. 143–147.
    30. Dutka V.S., Kovalskyi Ya.P., Aksimentyeva O.I., Kachmaryk V.V. Molecular modeling of intermolecular interaction between macromolecules of polyvinyl alcohol and polyaniline in polymer composite. Visnyk Lviv Univ. Ser. Chem. 2021. Vol. 62. P. 291–296. (in Ukrainian). (https://doi.org/10.30970/vch.6201.291).
    31. Tsizh B.R., Aksimentieva O.I., Olkhova M.R., Horbenko Yu.Yu. Sensory properties of polyaniline films obtained on optically transparent carriers. Nauk. Bulletin of LNUVMBT named after SZ Gzhytsky. 2016. Vol. 18(68). P. 121–125 (in Ukrainian).

How to Cite

AKSIMENTYEVA O., MARTYNIUK G., TSIZH B., KOVALSKY Ya., YATSKOV M. FORMATION OF FLEXIBLE ELEMENTS OF OPTICAL SENSORS BASED ON POLYAMINOARENES AND POLYVINYL ALCOHOL COMPOSITES. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021 Vol. LXVI. P. 7-18.

Download the pdf