Nazar ZAREMBA, Galyna NYCHYPORUK, Myroslava HORIACHA, Vasyl ZAREMBA
Ivan Franko National University of Lviv, Kyryla and Mephodiya Str. 6, 79005 Lviv, Ukraine e-mail: halyna.nychyporuk@lnu.edu.ua
DOI: https://doi.org/10.37827/ntsh.chem.2021.66.117
THE RCuIn1–xGax (R = La, Ce) SYSTEMS AT 870 K
The presented work is devoted to the study of LaCuIn1-xGax and CeCuIn1-xGax systems for the purpose of solubility of the fourth component in equiatomic compounds and structural characteristics of solid solutions. The samples for the investigation were synthesized by arc-melting of metals (purities better then 0.998) with subsequent annealing at 870 K for a month. The phase compositions of the alloys were characterized by means of X-ray powder diffraction (DRON-2.0M, FeKα-radiation, HZG-4a, CuKα-radiation) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM Tescan Vega 3 LMU). According to the results of experimental studies in the LaCuIn1-xGax system at 870 K, the solubility of Gallium in the LaCuIn compound is 6.7 at. % and the composition of solid solution is LaCuIn1–0.8Ga0–0.2 (ZrNiAl-type structure; a = 0.75500–0.75234(8); c = 0.42800–0.42963(6) nm; V = 0.21128–0.21060(4) nm3). The 16.7 at. % of Indium dissolves in the LaCuGa compound, and solid solution described by formula: LaCuGa1.0–0.5In0–0.5 (KHg2-type structure; a = 0.45439(8)–0.46393(18); b = 0.74991(16)–0.76130(35); c = 0.75760(14)–0.76916(31) nm; V = 0.25815(3)–0.27166(6) nm3). In the CeCuIn1-xGax system at 870 K we observed the formation two limited solid solutions with the structures of starting compounds: CeCuIn1.0–0.8Ga0–0.2 (ZrNiAl-type structure; a = 0.74915–0.74425(12); c = 0.42452–0.42794(9) nm; V = 0.20633–0.20528(6) nm3) and CeCuGa1.0–0.5In0–0.5 (KHg2-type structure; a = 0.45078(10)–0.45787(14); b = 0.74005(17)–0.74945(25); c = 0.75207(16)–0.76222(24) nm; V = 0.25089(9)–0.26155(6) nm3). In the both systems in equilibrium with the main phases there is a phase with a MnCu2Al-type structure in almost the entire concentration range. Comparison of the studied systems with the previously studied systems RTIn1–xMx (R = La, Ce, Y, Gd, Tb; T = Ni, Cu; M = Al, Ga, Ge, Sb) indicates common trends of nature of the interaction between the components.
Keywords: gallium, indium, powder data, solid solution.
References:
-
1. Kalychak Ya. M., Zaremba V. I., Pöttgen R., Lukachuk M., Hoffmann R.-D. Rare Earth–Transition Metal–Indides.
In: K. A. Gschneidner, Jr., J.-C. Bünzli, V. K. Pecharsky (Eds.). Handbook on the Physics and Chemistry of Rare
Earths. Elsevier, Amsterdam. 2005. Vol. 34. P. 1–133. (https://doi.org/10.1016/S0168-1273(04)34001-8).
2. Kalychak Ya. M. Isothermal section of phase diagrams and crystal structures of compounds in the R–Cu–In
systems. Metally. 1998. Vol. 4. P. 110–118 (in Russian).
3. Markiv V.Y., Belyavina N.N., Zhunkovskaya T.I. The X-ray structure investigation of the Y–Cu–Ga system alloys
and RECu2–REGa2 sections. Dopov. Akad. Nauk Ukr. RSR, Ser. A. 1982. Vol. 2. P. 80–83 (in
Ukrainian).
4. Mykhalichko O.B. Phase equilibria and crystal structures of compounds in the {La, Gd, Er}–Cu–Ga–Si systems at
600 °C: Ph.D. thesis, Lviv National University, Lviv. 2013. 20 p. (in Ukrainian).
5. Dwight A.E. Rare earth–Au(Cu)–X compounds with the Fe2P-, CaIn2-, and MgAgAs-types. Proc.
Rare Earth Res.
Conf., 12th, Colorado. 1976. Vol. 1. P. 480–489.
6. Nakotte H., Briick E., Prokeš K., de Boer F.R., Kuang Jian-ping, Cui Hui-jun, Li Jing-yuan, Yang Fu-ming
Electronic properties of CeCuGa and LaCuGa. IEEE Transactions on Magnetics. 1994. Vol. 30(2). P. 1202–1204.
(https://doi.org/10.1109/20.312231).
7. Szytuła A., Tyvanсhuk Yu., Jaworska-Gołąb T., Zarzycki A., Kalychak Y.M., Gondek L., Stüsser N. Magnetic
properties of the RCuIn (R = Ce, Nd, Gd, Tb, Dy, Ho, Er) and R2CuIn3 (R = Ce, Gd, Tb, Dy)
compounds. Chem. Met. Alloys. 2008. Vol. 1. P. 97–101.(https://doi.org/10.30970/cma1.0012).
8. Chevalier B., Bobet J. L., Pasturel M., Gaudin E., Etourneau J. R. Structure and magnetic properties of the
ternary gallides CeMGa (M = Mn, Co and Cu) and their hydrides. J. Alloys Compd. 2003. Vol. 356/357. P. 147–150.
(https://doi.org/10.1016/S0925-8388(02)01223-9).
9. Szytuła A., Penc B., Gondek Ł. Magnetic properties and electronic structure of CeTIn (T = Ni, Cu, Pd, Au)
compounds. Acta Physica Polonica A. 2007. Vol. 111(4). P. 475¬486. (https://doi.org/10.12693/APHYSPOLA.111.475).
10. Szytuła A., Kaczorowski D., Kalychak M., Penc B., Tyvanchuk Yu., Winiarski A. Electronic structure and
magnetic properties of the compound CeCuIn. J. Phys. Chem. Solids. 2008. Vol. 69. P.
2416–2419.(https://doi.org/10.1016/j.jpcs.2008.04.031).
11. Szytuła A., Tyvanсhuk Yu., Kalychak Y.M., Penc B., Winiarski A. Electronic structures of RCuIn and
R2CuIn3 (R
= La, Ce, Pr). Materials Science-Poland. 2008. Vol. 26(4). P. 1061–1067.
12. Malik S.K., Adroja D.T., Padalta B.D., Vijayaraghavan R. Magnetic susceptibility and electrical resistivity of
new equiatomic ternary cerium based compounds: CeRhIn and CeCuIn. Physica B. 1990. Vol. 163. P. 89–92.
(https://doi.org/10.1016/0921-4526(90)90134-G).
13. Bobet J.L., Pasturel M., Chevalier B. Relationship between structure and sorption kinetic behaviour for
ternary CeMX compounds. Intermetallics. 2006. Vol. 14. P. 544–550.
(https://doi.org/10.1016/j.intermet.2005.09.009).
14. Nakotte H., Prokeš K., de Boer F.R., Kuang Jian-pin, Cui Hui-jin, Li Jing-yuan, Yang Fu-ming, Sechovsky V.,
Mihalik M. Electronic Properties of Ce(Cu,Ga)2. IEEE Trans. Magn. 1994. Vol. 30(2). P. 1205–1207.
(https://doi.org/10.1109/20.312230).
15. Zhengxiao Li, Yupeng Wang, Jianlin Luo, Xiaohaag Cai, Weijun Yao, Duo Jin, Jianping Kuang, Fuming Yang
Specific heat and resistivity study of heavy fermion compound CeCuGa. Physica C. 1991. Vol. 185–189. P. 2635–2636.
(https://doi.org/10.1016/0921-4534(91)91440-F).
16. Hou, Y., Jin, D., Wang, Y., Luo, J., Nyeanchi, E., Brewer, D.F., Thomson, A.L. Electronic Properties of
CeCuGa. Chinese Phys. Lett. 1998. Vol. 15(1). P. 62–64. (https://doi.org/10.1088/0256-307X/15/1/025).
17. Hu Q., Xianyu Z., Qui M., Yan X., Cheng Z., Zhao Q., Sun W. Magnetic properties of nanocrystalline heavy
fermion CeCuGa material at low temperatures. J. Magn. Magn. Mater. 1995. Vol. 140–144. P. 1225–1226.
(https://doi.org/10.1016/0304-8853(94)00856-6).
18. Gupta S., Suresh K.G. Review on magnetic and related properties of RTX compounds. J. Alloys Compd. 2015. Vol.
618. P. 562−606. (https://doi.org/10.1016/j.jallcom.2014.08.079).
19. Horiacha M., Zinko L., Nychyporuk G., Serkiz R., Zaremba V. The GdTIn1–xMx (T = Ni, Cu;
M = Al, Ga; 0<x<1)
systems. Visnyk Lviv University. Series Chemistry. 2017. Vol. 58(1). P. 77–85 (in Ukrainian).
20. Horiacha M., Rinylo N., Nychyporuk G., Serkiz R., Pöttgen R., Zaremba V. The interaction of the components in
YCuIn1–x (M=Al,
Ga) systems. Ukr. Chem. Journ. 2018. Vol. 84(11). P. 31–37 (in Ukrainian).(https://doi.org/10.30970/vch.5901.067).
21. Dominyuk N., Nychyporuk G., Muts I., Zaremba V. The RECu1–xGaxIn (RE=La, Ce) systems at 870 K. Chem. Met.
Alloys. 2020. Vol. 13. P. 1–7.
(https://doi.org/10.30970/cma13.0395).
22. Kraus W., Nolze G. Powder Cell for Windows. Berlin, 1999.
23. STOE WinXPOW, Version 1.2, STOE & CIE GmbH. Darmstadt, 2001.
24. Rodríguez-Carvajal J. Recent Developments of the
Program FULLPROF. Commission on Powder Diffraction (IUCr). Newsletter. 2001. Vol. 26. P. 12–19.
25. Krypyakevych P.I., Markiv V.Y., Melnyk E.V. Crystal structures of the compounds ZrNiAl, ZrCuGa and their
analogues. Dopov.
Akad. Nauk Ukr. RSR, Ser. A 1967. Vol. 8. P. 750–753. (in Ukrainian).
26. Duwell E.J., Baenzinger N.C. The crystal structure of KHg and KHg2. Acta Crystallogr. 1955. Vol. 8.
P. 705–710.
(https://doi.org/10.1107/S0365110X55002168).
27. Soltys J. X-Ray Diffraction Research of the Order-Disorder
Transitions in the Ternary Heusler Alloys B2MnAl (B=Cu, Ni, Co, Pd, Pt). Phys. Status Solidi A. 1981.
Vol. 66. P. 485–491. (https://doi.org/10.1002/pssa.2210660210).
28. Dmytrakh O. V., Kalychak Ya. M. The system La–Cu–In.
Izv. AN SSSR. Metally. 1990. Vol. 6. P. 197–199. (in Russian).
29. Nowotny H. Die Kristallstrukturen von Ni5Ce, Ni5La, Ni5Ca, Cu5La,
Cu5Ca, Zn5La, Zn5Ca, Ni2Ce, MgCe, MgLa und MgSr. Z. Metallkd. 1942.
Bd. 34. S. 247–253. (https://doi.org/10.1515/ijmr-1942-341101).
30. Baranyk V. M., Kalychak Ya. M. The system Ce–Cu–In. Neorg. Mater. 1991. Vol. 27. P. 1235–1238. (in
Russian).
31. Emsley J. The Elements: 2nd ed. Oxford: Clarendon Press, 1991. 251 p.
32. Zaremba N., Schepilov Yu., Nychyporuk
G., Pavlyuk V., Zaremba V. The LaNiIn1–xMx (M=Al, Ge) systems. Visn. Lviv Univ. Ser. Chem.
2020. Vol. 61(1). P.
44–51 (in Ukrainian). (https:/doi.org/10.30970/vch.6101.044).
33. Zaremba N., Nychyporuk G., Schepilov Yu., Panakhyd O., Muts I., Hlukhyy V., Pavlyuk V. The
CeNiIn1–xMx (M=Al, Ga) systems at 873 K. Ukr. Chem. Journ.
2018. Vol. 84(12). P. 76–84 (in Ukrainian).
34. Zaremba N., Nychyporuk G., Schepilov Yu., Serkiz R., Hlukhyy V.,
Pavlyuk V. The interaction of the components in the CeNiIn1–xMx (M=Ge, Sb) systems. Visn.
Lviv Univ. Ser. Chem.
2019. Vol. 60(1). P. 82–90 (in Ukrainian). (https://doi.org/10.30970/vch.6001.082).
35. Horiacha M., Savchuk I.,
Nychyporuk G., Serkiz R., Zaremba V. The YNiIn1–xMx (M=Al, Ga, Sb) systems. Visn. Lviv Univ.
Ser. Chem. 2018.
Vol. 59(1). P. 67–75 (in Ukrainian). (https://doi.org/10.30970/vch.5901.067).
36. Klicpera M., Javorský P., Daniš S. The change of anisotropy in TbNi(Al,In) compounds studied by low
temperature x-ray diffraction. J.
Phys. Conf. Ser. 2011. Vol. 303. P. 012031(6). (https://doi.org/10.1088/1742-6596/303/1/012031).
37. Horiacha M., Halyatovskii B., Horiacha S., Nychyporuk G., Pöttgen R., Zaremba V. The
TbNiIn1–xMx (M=Al, Ge, Sb) systems.
Visn. Lviv Univ. Ser. Chem. 2020. Vol. 61(1). P. 52–62. (https:/doi.org/10.30970/vch.6101.052).
38. Zaremba N.V. Intermetallic phases in RENiIn–RENiM (RE=La, Ce; M=Al, Ga, Ge) systems and related to them: Ph.D.
thesis, Lviv
Nat. Univ. Lviv 2020 23 p. (in Ukrainian).
How to Cite
ZAREMBA N., NYCHYPORUK G., HORIACHA M., ZAREMBA V. THE RCuIn1–xGax (R = La, Ce) SYSTEMS AT 870 K. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021 Vol. LXVI. P. 117-124.